Với a,b,c>0. Hãy chứng minh các bất đẳng thức sau:
a, \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
b, \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
c, \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
5.
\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)
Cộng vế với vế:
\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1.
Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)
\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
2.
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng vế với vế:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)
3.
Từ câu b, thay \(c=1\) ta được:
\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)
hơn 1 năm rồi không ai làm :'(
a) Áp dụng bđt Cauchy ta có :
\(a+b\ge2\sqrt{ab}\)(1)
\(b+c\ge2\sqrt{bc}\)(2)
\(c+a\ge2\sqrt{ca}\)(3)
Nhân (1), (2), (3) theo vế
=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)
=> đpcm
Dấu "=" xảy ra <=> a=b=c
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
+ thêm bớt bc,ca,ab lần lượt cho P ta được
\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)
áp dụng BDT cô si cho mẫu ta có
\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)
suy ra
\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)
tương tự với các BDT còn lại suy ra :
\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)
đên đây easy chưa ? chung mẫu + lại với nhau ta được
\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)
áp dụng BDT cô si ta có
\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được
ta có \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức
thay vào và đổi dấu ta được
\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)
có \(ab+1\ge2\sqrt{ab}\)
\(ca+1\ge2\sqrt{ac}\)
\(bc+1\ge2\sqrt{bc}\)
\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)
ta lại có
\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra
\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)
suy ra
\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)
\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)
ta có
\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)
\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)
\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)
\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)
bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái
\(a^3+b^3+c^3\le a+b+c\)
bạn xem lại đi nha @@
Áp dụng bđt AM-GM:
\(\frac{a^3}{b}+ab\ge2a^2\)
\(\frac{b^3}{c}+bc\ge2b^2\)
\(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ac\ge2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)
\("="\Leftrightarrow a=b=c\)
a) Áp dụng bất đẳng thức AM-GM ta có ngay :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2\sqrt{\frac{ab^2c}{ac}}=2\sqrt{b^2}=2\left|b\right|=2b\)( do b > 0 )
=> đpcm
Đẳng thức xảy ra <=> a = b = c
b) Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)(1) ( như a) đấy :)) )
tương tự : \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)(2) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\)(3)
Cộng (1), (2), (3) theo vế ta có đpcm
Đẳng thức xảy ra <=> a = b = c
c) \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)
\(=\frac{a^3}{2ab}+\frac{b^3}{2ab}+\frac{b^3}{2bc}+\frac{c^3}{2bc}+\frac{c^3}{2ca}+\frac{a^3}{2ca}\)
\(=\frac{a^2}{2b}+\frac{b^2}{2a}+\frac{b^2}{2c}+\frac{c^2}{2b}+\frac{c^2}{2a}+\frac{a^2}{2c}\)(I)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\left(I\right)\ge\frac{\left(a+b+b+c+c+a\right)^2}{2b+2a+2c+2b+2a+2c}=\frac{\left[2\left(a+b+c\right)\right]^2}{4\left(a+b+c\right)}=\frac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)}=a+b+c\)
hay \(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\)(đpcm)
Đẳng thức xảy ra <=> a = b = c