chung minh
x^2+x+4 khong chihet cho 24 (n thuoc N)
mk tickkk chio
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+n+1=n(n+1)+1
Vì vì n(n+1) là tích của hai số tự nhiên liên tiếp nên tích của chúng sẽ có chữ số tận cùng là 0,2,6 nên n(n+1)+1 sẽ có chữ số tận cùng là 1,3,7 không chia hết cho 4 vì các số sau đều là số lẻ. Tương tự, không chia hết cho 5, vì có chữ số tận cùng không phải 0,5 nén không chia hết cho 5.
Nhớ K MÌNH NHA!!!!!!!!!!!!!!
CHUNG MINH VOI X,Y THUOC N neu x+2y chia het cho 5 thi 3x-4y chia het hco 5 dieu nguoc co dung khong
1) Để \(\overline{7x5y1}⋮3\)thì \(\left(7+x+5+y+1\right)⋮3\)
\(\Rightarrow\left(13+x+y\right)⋮3\)
\(\Rightarrow x+y\in\left\{2;5;8;11;17;20;...\right\}\left(1\right)\)
Vì x và y là số có 1 chữ số
\(\Rightarrow0\le x\le9\)và \(0\le y\le9\)
\(\Rightarrow0\le x+y\le18\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+y\in\left\{2;5;8;11;14;17\right\}\)
Nên ta có bảng giá trị của x, y là:
x + y | 2 | 5 | 8 | 11 | 14 | 17 |
x - y | 4 | 4 | 4 | 4 | 4 | 4 |
x | 3 | 4,5 \(\notin N\) | 6 | 7,5\(\notin N\) | 9 | 6,5\(\notin N\) |
y | -1\(\notin N\) | 2 | 5 | |||
loại | loại | thỏa mãn | loại | thỏa mãn | loại |
Từ bảng giá trị ta thấy các cặp giá trị \(x,y\in N\)để \(\overline{7x5y1}⋮3\)là: 6 và 2; 9 và 5
2)
a) Ta có:
\(\overline{abcabc}\)
\(=\overline{abc}.1000+\overline{abc}\)
\(=\overline{abc}.\left(1000+1\right)\)
\(=\overline{abc}.1001\)
\(=\overline{abc}.7.11.13\)
Vì \(7⋮7\)nên \(\left(\overline{abc}.7.11.13\right)⋮7\left(1\right)\)
Vì \(11⋮11\)nên \(\left(\overline{abc}.7.11.13\right)⋮11\left(2\right)\)
Vì \(13⋮13\)nên \(\left(\overline{abc}.7.11.13\right)⋮13\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\left(\overline{abc}.7.11.13\right)⋮7;11;13\)
Vậy số có dạng \(\overline{abcabc}\)luôn chia hết cho 7; 11; 13.
b) Để \(\frac{\left(a+3\right)\left(a+6\right)}{2}\)là số tự nhiên thì \(\left(a+3\right)\left(a+6\right)⋮2\)
Vì a là số tự nhiên nên a là số chẵn hoặc a là số lẻ
(+) Trường hợp 1: a là số chẵn
=> a + 6 là số chẵn
\(\Rightarrow\left(a+6\right)⋮2\)
\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(4\right)\)
(+) Trường hợp 2: a là số lẻ
=> a + 3 là số chẵn
\(\Rightarrow\left(a+3\right)⋮2\)
\(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\left(5\right)\)
Từ (4) và (5) \(\Rightarrow\left(a+3\right)\left(a+6\right)⋮2\)với mọi \(a\in N\)
Vậy \(\frac{\left(a+3\right)\left(a+3\right)}{2}\)là số tự nhiên với mọi \(a\in N\)
3)
a) Vì theo bài ta có 49 điểm \(\in AB\)và không trùng với A, B nên sẽ có 51 điểm trên hình vẽ. Lấy 1 điểm bất kì trong 51 điểm. Nối điểm đó với 50 điểm còn lại ta sẽ được 50 đoạn thẳng.
Cứ làm như vậy với 51 điểm thì số lượng đoạn thẳng được tạo thành là:
51.50 = 2550 (đoạn thẳng)
Như vậy mỗi đoạn thẳng đã được tính 2 lần nên số đoạn thẳng thực tế có là:
2550 : 2 = 1275 (đoạn thẳng)
Vậy số lượng đoạn thẳng được tạo nên từ A, B và 49 điểm là 1275 đoạn thẳng.
b) Lấy 1 điểm bất kì trong n điểm. Nối điểm đó với n - 1 điểm còn lại tạo thành n - 1 đường thẳng
Cứ làm như vậy với n điểm thì số lượng đường thẳng được tạo thành là:
n(n - 1) (đường thẳng)
Nhưng như vậy mỗi đường thẳng đã được tính 2 lần nên số đường thẳng thực tế có là:
n(n - 1) : 2 (đoạn thẳng)
Mà theo bài có tất cả 1128 đường thẳng nên ta có:
\(n\left(n-1\right):2=1128\)
\(\Rightarrow n\left(n-1\right)=2256\)
\(n\left(n-1\right)=2^4.3.37\)
\(n\left(n-1\right)=48\left(48-1\right)\)
\(\Rightarrow n=48\)
Vậy để tạo thành 1128 đường thẳng thì sẽ có 48 điểm trong đó không có 3 điểm nào thẳng hàng.
Ta có
N=x^5/120+x^4/12+7x^3/24+5x^2/12+x/5
N = ( x^5 + 10x^4 + 35x^3 + 50x^2 + 24x)/120
N = x( x^4 + 10x^3 + 35x^2 + 50x + 24)/120
N = x( x^4 + x^3 + 9x^3 + 9x^2 + 26x^2 + 26x + 24x + 24)/120
N = x(x +1)(x^3 + 9x^2 + 26x + 24)/120
N = x(x +1)(x^3+ 2x^2 + 7x^2 + 14x + 12x + 24)/120
N = x(x+1)(x+2)(x^2 + 7x + 12)/120
N = x(x +1)(x+2)(x+3)(x+4)/120
N có tử số là tích của 5 số tự nhiên liên tiếp
-> N chia hết cho 5, 3
trong 5 số tự nhiên liên tiếp có một số chia hết cho 4 và một số chia hết cho 2
-> N chia hết cho 4x2 = 8
Vậy N chia hết cho 3x5x8 = 120
Vậy N luôn là số tự nhiên với mọi số tự nhiên x
Ben xem thế này có đúng ko nha
P = x^5/120 + x^4/12 + 7x³/24 + 5x²/12 + x/5
= x(x^4/120 + x³/12 + 7x²/24 + 5x/12 + 1/5)
= x(x^4 + 10x³ + 35x² + 50x + 24)/120
Xét: x(x^4 + 10x³ + 35x² + 50x + 24)
= x(x + 1)(x + 2)(x + 3)(x + 4)
--
Trước hết ta chứng minh x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x chia hết cho 2 => x + 2 và x + 4 cũng chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x lẻ => x = 2k + 1
=> x + 1 = 2k + 2 và x + 3 = 2k + 4
Dễ dàng chứng minh một trong hai số x + 1 và x + 3 có một số chia hết cho 2 và một số chia hết cho 4
Thật vậy:
► Nếu k lẻ thì
x + 1 = 2k + 2 = 2(2m + 1) + 2 = 4m + 4 chia hết cho 4
x + 3 = 2k + 4 = 2(2m + 1) + 4 = 4m + 6 chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
► Nếu n chẵn thì:
x + 1 = 2k + 2 = 4m + 2 chia hết cho 2
x + 3 = 2k + 4 = 4m + 4 chia hết cho 4
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
Tóm lại ta có
x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 với mọi x là số tự nhiên (1)
---
Mặt khác x(x + 1)(x + 2)(x + 3)(x + 4) là tích 5 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 5
=> x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5 với mọi x là số tự nhiên (2)
----
Từ (1) và (2) cho ta
x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5, vừa chia hết cho 8 với mọi x là số tự nhiên
mà (3 , 5, 8) là bộ 3 số nguyên tố cùng nhau
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho tích 3.5.8 = 120
Vậy P = x(x^4 + 10x³ + 35x² + 50x + 24)/120 là một số tự nhiên.