Cho đa thức f(x)=\(x^{2009}+x^{2008}+1\).Số dư của đa thức f(x)cho đa thức \(x^2+x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$f(x)=x^{2009}+x^{2008}+1$
$=(x^{2009}-x^2)+(x^{2008}-x)+(x^2+x+1)$
$=x^2(x^{2007}-1)+x(x^{2007}-1)+(x^2+x+1)$
$=x^2[(x^3)^{669}-1]+x[(x^3)^{669}-1]+(x^2+x+1)$
$=x^2(x^3-1)[(x^3)^{668}+....+1]+x(x^3-1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)[(x^3)^{668}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)A(x)+x(x-1)(x^2+x+1)A(x)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)A(x)+x(x-1)A(x)+1]\vdots x^2+x+1$
Lời giải:
$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$
$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$
$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$