K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

ĐK:x\(\ge\)0

pt<=>4x-4\(\sqrt{x}\)+1+x-2\(\sqrt{x}\)*y+y2=0

<=> (2\(\sqrt{x}\) -1)2+ (\(\sqrt{x}\) -y)2 = 0

(a2 + b2 = 0 <=> a và b bằng 0)

ta có hệ pt\(\int^{2\sqrt{x}-1}_{\sqrt{x}-y=0}\)

giải hệ ta đc x=\(\frac{1}{4}\);y=\(\frac{1}{2}\)

vậy...

4 tháng 11 2018

\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)               (1)          (ĐK:\(x\ge0\)0)

Đặt \(\sqrt{x}=z\) ta có phương trình :

\(5z^2-2\left(2+y\right)z+y^2+1=0\)            (2)

Xem (2) là phương trình bậc hai ẩn z thì phương trình có nghiệm khi \(\Delta'=0\Rightarrow y=\frac{1}{2}\)

Thế vào (1) ta tìm được \(x=\frac{1}{2}\)

 vậy \(x=\frac{1}{2};y=\frac{1}{2}\)

   

26 tháng 7 2015

Điều kiện: \(x\ge0\)

Ta có: \(5x-2\sqrt{x}\left(y+2\right)+y^2+1=0\)

   \(\Leftrightarrow4x+x-2y\sqrt{x}-4\sqrt{x}+y^2+1=0\)

   \(\Leftrightarrow4x-4\sqrt{x}+1+x-2y\sqrt{x}+y^2=0\)

   \(\Leftrightarrow\left(2\sqrt{x}-1\right)^2+\left(\sqrt{x}-y\right)^2=0\)

   \(\Leftrightarrow2\sqrt{x}-1=0\) và  \(\sqrt{x}-y=0\)

   \(\Leftrightarrow\sqrt{x}=\frac{1}{2}\) và  \(y=\sqrt{x}\) 

   \(\Leftrightarrow x=\frac{1}{4}\) và  \(y=\frac{1}{2}\)

 

 ĐK: x ≥ 0 
pt <=> 4x - 4√x +1 + x - 2√x .y + y^2 = 0 
<=> (2√x -1)² + (√x -y)² = 0 
(a² + b² = 0 <=> a và b bằng 0) 
<=> hệ 2√x -1 = 0, √x -y = 0 
<=> x = 1/4, y =1/2 (thỏa mãn) 

KL: x=1/4, y = 1/2 
(đây là giải Trên R, còn trên C thì giải khác)

21 tháng 3 2016

o trong cau hoi tuong tu co day anh .em nghi vay thoi chu em chang biet

30 tháng 12 2021

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

30 tháng 12 2021

Em cảm ơn anh ạ! 

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-abc-la-cac-so-duong-cmr-dfraca2bcdfracb2cadfracc2abgedfracabc2.4139278814936

15 tháng 3 2016

ĐK: x ≥ 0 
pt <=> 4x - 4√x +1 + x - 2√x .y + y^2 = 0 
<=> (2√x -1)² + (√x -y)² = 0 
(a² + b² = 0 <=> a và b bằng 0) 
<=> hệ 2√x -1 = 0, √x -y = 0 
<=> x = 1/4, y =1/2 (thỏa mãn) 

KL: x=1/4, y = 1/2 

15 tháng 3 2016

tkss nhiều, bn giúp mik giải vài câu nữa đc k

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)