x^2 – 7x + 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+6x+5=x^2+5x+x+5=x\left(x+5\right)+\left(x+5\right)=\left(x+1\right)\left(x+5\right)\)
\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-3\right)\left(x-4\right)\)
\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
\(a,x^2+6x+5=x^2+5x+x+5\)
\(=x\left(x+5\right)+\left(x+5\right)=\left(x+5\right)\left(x+1\right)\)
\(b,\)\(x^2-7x+12=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
\(c,\)\(x^2-7x+10=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
2) x2 + 3x + 2 = x2 + 2x + x + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)
3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)
4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)
5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)
7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)
8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)
9) 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
10) 6x2 + 15x + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)
11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)
12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(ĐK:x\ge5\)
BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)
\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)
\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)
\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)
\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
ĐKXĐ: \(x\ge5\)
Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)
\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)
Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow x^2-7x+10< 16\)
\(\Leftrightarrow x^2-7x-6< 0\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)
\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)
\(\Rightarrow x^2-7x+10=16\)
\(\Rightarrow x^2-2x-5x+10=16\)
\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)
...........................
\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)
\(=\left(x^2-7x\right)^2-100\)
x2 - 7x + 12
= x2 - 4x - 3x + 12
= x(x - 4) - 3(x - 4)
= (x - 4).(x - 3)
x2 - 7x + 10
= x2 - 2x - 5x + 10
= x(x - 2) -5(x - 2)
= (x - 2)(x - 5)
Chúc bạn học tốt !!!
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)
Đặt \(t=x^2-4\), ta có :
\(t\left(t-6\right)-72=0\)
\(\Leftrightarrow t^2-6t-72=0\)
\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm4\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(2x+1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)
TH1 : \(x+1=0\Leftrightarrow x=-1\)
TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
=> \(x=-1;x=\pm2\)
b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40=72\)
\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)
Ta có pt mới : \(t^2-14t-32=0\) Tự xử
=(x-2)(x-5)