Cho tam giác DEF có DE = DF. Tia phân giác của góc D cắt EF tại M.
a) Chứng minh: ∆DEM = ∆DFM.
b) Chứng minh DM vuông góc với EF
c) Chứng minh M là trung điểm của cạnh EF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
a, Xét 2 tam giác vuông DEM và HEM có:
ME cạnh chung
\(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)
=> tam giác DEM=tam giác HEM(CH-GN)
b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)
c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M
=> K,M,H thẳng hàng
a) Xét \(\Delta\)DEM và \(\Delta\)DFM có:
DM chung
\(E\widehat{D}M=F\widehat{D}M\left(Vì.DM.là.phân.giác.của.E\widehat{D}F\right)\)
DE=DF(giả thiết)
\(\Rightarrow\Delta=\Delta\left(c.g.c\right)\)
b)Chịu:)
c)Ta có \(\Delta DEM=\Delta DFM\left(cmt\right)\)
=>ME=MF(2 góc tương ứng)
=>M là trung điểm của FE