cho A=\(\frac{n-5}{n+1}\) n\(\in\) Z
Tìm n\(\in\) Z de A\(\in\) Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=\frac{2\left(n+1\right)}{n+1}+\frac{13}{n+1}=2+\frac{13}{n+1}\)
Để \(\frac{2n+15}{n+1}\in Z\) <=> \(n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
n + 1 | 1 | -1 | 13 | -13 |
n | 0 | -2 | 12 | -14 |
Vậy để \(\frac{2n+15}{n+1}\in Z\) thì n = {0;-2;12;-14}
\(\frac{2n+15}{n+1}\in Z\Leftrightarrow2n+15⋮n+1\Leftrightarrow2n+2+13⋮n+1\Leftrightarrow2\left(n+1\right)+13⋮n+1\)\(\Leftrightarrow13⋮n+1\) \(\left(vì2\left(n+1\right)⋮n+1\right)\)
\(\Leftrightarrow n+1\inƯ\left(13\right)\Leftrightarrow n+1\in\left\{\pm1;\pm13\right\}\Leftrightarrow n\in\left\{0;-2;12;-14\right\}\)
Vậy\(n\in\left\{0;-2;12;-14\right\}\)
\(ĐểA\in Z\)thì:
\(n+2⋮n-5\)
=> \(\left[n-5\right]+7⋮n-5\)
=> 7 chia hết cho n - 5
=> n -5 E Ư[7] E {-7;-1;1;7}
=> n E {-2;4;6;12}
Vậy: n = -2; n = 4 n = 6; n = 12
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\)thì n-5 là ước nguyên của 7
\(n-5=1\Rightarrow n=6\)
\(n-5=7\Rightarrow n=12\)
\(n-5=-1\Rightarrow n=4\)
\(n-5=-7\Rightarrow n=-2\)
Ai thấy đúng k cho mink nha !!!
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
\(A=\frac{3n-5}{n+4}\) là số nguyên
\(\Leftrightarrow3n-5⋮n+4\)
\(\Rightarrow3n+12-17⋮n+4\)
\(\Rightarrow3\left(n+4\right)-17⋮n+4\)
Vì \(3\left(n+4\right)⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
Vậy \(n\in\left\{-3;-5;-13;-21\right\}\).
\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên => \(\frac{17}{n+4}\)có giá trị nguyên
=> \(17⋮n+4\)
=> \(n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
de A thuoc Z <=> n-5 chia het cho n+1
=> n+1 - 6 chia het cho n+1
=> -6 chia het cho n+1
=> n+1 thuộc Ư(-6)
ma : Ư(-6)= ( -1; 1;-2; 2; -3; 3; -6; 6)
ta co bg:
n+1 | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
n | -2 | 0 | -3 | 1 | -4 | 2 | -7 | 5 |
vay n = -7;-4;-2;0;1;2;5
Ta có :
A =\(\frac{n+1-6}{n+1}\)
\(\Leftrightarrow A=1-\frac{6}{n+1}\)
vì 1 thuộc Z muốn A thuộc Z
=> \(\frac{6}{n+1}\in Z.\)
=> n+1 thuộc Ư(6) ={ -6;-3;-2;-1;1;2;3;6}
+) n+1= -6 <=> n= -7
+)n+1= -3 <=> n=-4
+)n+1 =-2 <=> n=-3
+) n+1= -1 <=> n= -2
+) n+1= 1 <=> n= 0
+) n+1=2 <=> n=1
+) n+1= 3 <=> n=2
+)n +1 = 6 <=> n =5
Vậy n ={-7;-4;-3;-2;0;1;2;5}
Ta có:
\(A=\frac{n+2}{n+5}=\frac{n+5-3}{n+5}=1-\frac{3}{n+5}\)
Để \(A\in Z\)thì \(\frac{3}{n+5}\in Z\)
\(\Leftrightarrow3⋮\left(n+5\right)\)
\(\Rightarrow n+5\inư\left(3\right)\)
\(\Rightarrow n+5\in\left\{1;-1;3;-3\right\}\)
Lập bảng :
n+5 | 1 | -1 | 3 | -3 |
n | -4 | -6 | -2 | -8 |
Vậy \(x\in\left\{-4;-6;-2;-8\right\}\)
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
A= (n-5)/(n+1) = (n+1-6)/(n+1) = (n+1)/(n+1) - 6/(n+1) = 1-6/(n+1)
để A thuộc Z thì n+1 thuộc Ư(6)...
Ta có:
\(\frac{n-5}{n+1}=\frac{\left(n+1\right)-4}{n+1}=\frac{n+1}{n+1}-\frac{4}{n+1}=1-\frac{4}{n+1}\)
Để A \(\in\) Z thì \(\frac{4}{n+1}\in Z\)
\(\Rightarrow\) 4 chia hết cho n + 1
\(\Rightarrow n+1\inƯ_{\left(4\right)}\)
\(\Rightarrow n+1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{0;1;3;-2;-3;-5\right\}\)
Vậy \(n\in\left\{0;1;3;-2;-3;-5\right\}\)
Ai k mình, mình k lại.