Tìm số tự nhiên x biết : 1/3 + 1/6 - 1/10 + ... + 1/x(x+1):2 = 2001/2003
Các bạn nhớ chỉ cách trình bày luôn nhé!
Cảm ơn nhiều nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x/5-4/y=1/3
4/y=x/5-1/3
4/y=3x/15-5/15
4/y=(3x-5)/15
Suy ra
y*(3x-5)=4*15
y*(3x-5)=60
Mà 3x-5 là số lẻ và là số tự nhiên
nên có 3 cặp số tự nhiên thỏa mãn
1/3.4 + 1/4.5 + 1/5.6+ 1/6.7+....+1/x(x+1) =3/10
1/3 -1/4 + 1/4-1/5+ 1/5 -1/6+......+1/x -1/x+1 =3/10
1/3 -1/x+1= 3/10
1/x+1= 1/3 -3/10
1/x+1 = 1/30
=> x+1= 30
x= 30-1
x= 29
Vậy...
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)