cho tam giac ABC vuong tai A duong phan giac BD ke DE vuong BC (E thuoc BC) tren tia doi cua tia AB lay diem F
sao cho AF=CE
a) tam giac ABD=tam giac EBD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔBAC cân tại A
mà AD là phân giác
nên AD là đường cao
b: góc FAC=(180 độ-góc BAC)/2
góc ACB=(180 độ-góc BAC)/2
Do đó: góc FAC=góc ACB
=>AF//BC
c: Xét ΔECB có
CA là đường trung tuyến
CA=EB/2
DO đó: ΔECB vuông tại C
=>CE//AD
Xét tứ giác FDAE có
FD//AE
EF//AD
Do đó: FDAE là hình bình hành
Suy ra: FE=AD
Sửa đề: Trên cạnh BC lấy điểm E sao cho BE = BA (xem lại đoạn này)
CM: Xét t/giác ABD và t/giác EBD
có: AB = BE (gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
b) Ta có : t/giác ABD = t/giác EBD (cmt)
=> AD = DE (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{BED}=90^0\)(2 góc t/ứng) => \(DE\perp BC\)
c) Ta có: AB = BE (gt) => B \(\in\)đường trung trực của AE
AD = DE (cmt) => D \(\in\)đường trung trực của AE
mà B \(\ne\)D => BD là đường trung trực của AE
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
Vẽ hình để tìm được hướng giải bài toán đi bạn