K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

12 tháng 4 2019

Chọn A.

Đồ thị hàm số có f’(x) có ba điểm tiếp xúc với trục hoành và không đổi dấu qua ba điểm đó. Vậy hàm số không có cực trị

30 tháng 5 2018

 

27 tháng 11 2017

18 tháng 12 2017

Vì hàm số xác định trên cả R và y' đổi dấu khi đi qua các điểm -2;-1;1;2 do đó hàm số có 4 điểm cực trị.

Chọn đáp án B.

2 tháng 12 2019

Đáp án A

Từ bảng biến thiên của hàm số y=f(x), suy ra bảng biến thiên của hàm số  y = f ( x ) là 

Dựa vào bảng biến thiên, ta suy ra hàm số có 4 điểm cực trị.

17 tháng 12 2019

Chọn B

Ta có g’(x) = f’(x) + 1.

 Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song  với Oy lên trên 1 đơn vị.

Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.

=> Hàm số y= g(x) có 2 điểm cực trị.

1 tháng 4 2019

Đáp án B

Từ hình vẽ ta thấy, hàm số f'(x) =  0 có 2 nghiệm phân biệt x = 1 và x = -1.

Trong đó chỉ có tại x = 1 thì f'(x) đổi dấu từ âm sang dương, do đó hàm số y = f(x) có một điểm cực trị.

30 tháng 7 2017

Đáp án B

Từ hình vẽ ta thấy, hàm số f'(x) = 0 có 2 nghiệm phân biệt x = 1 và x = -1.9x

Trong đó chỉ có tại x = 1 thì f'(x) đổi dấu từ âm sang dương, do đó hàm số y = f(x) có một điểm cực trị.