K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Một số chính phương khi chia cho 3 có dư 0 hoặc 1 (2 loại số dư). Mà có 3 số $A,B,C$ nên theo nguyên lý Đi-rích-lê thì tồn tại $[\frac{3}{2}]+1=2$ số có cùng số dư khi chia cho 3.

Giả sử đó là hai số $A,B$. Khi đó: $A-B\vdots 3\Rightarrow (A-B)(B-C)(C-A)\vdots 3(*)$
Lại có:

Nếu trong 3 số $A,B,C$ có ít nhất 2 số chẵn. Không mất tổng quát gọi 2 số đó là A và B.

Vì $A,B$ là số chính phương chẵn nên $A\vdots 4; B\vdots 4$

$\Rightarrow A-B\vdots 4\Rightarrow (A-B)(B-C)(C-A)\vdots 4$
Nếu $A,B,C$ có 1 số chẵn 2 số lẻ. Giả sử 2 số lẻ là $A,B$. Vì $A,B$ là scp lẻ nên $A,B$ chia 8 cùng dư 1.

$\Rightarrow A-B\vdots 8\Rightarrow (A-B)(B-C)(C-A)\vdots 8\vdots 4$
Nếu $A,B,C$ là 3 số lẻ. Khi đó $A-B\vdots 2; B-C\vdots 2; C-A\vdots 2$

$\Rightarrow (A-B)(B-C)(C-A)\vdots 8\vdots 4$
Vậy $(A-B)(B-C)(C-A)\vdots 4(**)$

Từ $(*); (**)\Rightarrow (A-B)(B-C)(C-A)\vdots (3.4=12)$

18 tháng 1 2022

Toán Đội Tuyển đúng ko bạn???

10 tháng 12 2015

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = ﴾a ‐ b﴿﴾b ‐ c﴿﴾c ‐ a﴿

+Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1 ‐ Vì a, b, c chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> a ‐ b hoặc b ‐ c hoặc c ‐ a chia hết cho 3

=> A chia hết cho 3 ﴾1﴿ ‐ Vì a, b, c chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> a ‐ b hoặc b ‐ c hoặc c ‐ a chia hết cho 4

=> A chia hết cho 4 ﴾2﴿

Tư ﴾1﴿ và ﴾2﴿ kết hợp với ƯCLN ﴾3,4﴿ = 1

=> A chia hết cho 3 x 4

=> A chia hết cho 12

Vậy ...

18 tháng 1 2022

 Lời giải của mình ntn. k cho mình nhé!undefined

Áp dụng:

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

6 tháng 6 2016

a;b;c là các số chính phương nên viết được dưới dạng: \(a=x^2;b=y^2;c=z^2\mid x;y;z\in Z\)

Do đó, \(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\left(y+z\right)\left(z-x\right)\left(z+x\right)\)

  • Trong 3 số x;y;z có ít nhất 2 số có cùng tính chẵn hoặc lẻ. Suy ra Tổng và Hiệu 2 số có cùng tính chẵn (hoặc lẻ) đó là số chẵn. => \(M\vdots4\)(1)
  • Trong 3 số x;y;z nếu có 2 số nào có cùng số dư khi chia cho 3 thì hiệu của chúng sẽ chia hết cho 3 => \(M\vdots3\)(a)
  • Trong 3 số x;y;z nếu không có bất kỳ 2 số nào có cùng số dư khi chia cho 3 thì các số dư đó khác nhau và lần lượt là: 0;1;2. Khi đó tổng 2 số có số dư =1 và số có số dư bằng 2 sẽ chia hết cho 3 =>\(M\vdots3\)(b)
  • Từ (a) và (b) => \(M\vdots3\forall x;y;z\)(2)
  • Từ (1) và (2) =>\(M\vdots12\forall a;b;c\)(ĐPCM)
26 tháng 4 2016

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

6 tháng 11 2018

Số chính phương chia 3 dư 0 hoặc 1. Số chính phương chia 4 dư 0 hoặc 1. Đặt D = (A - B)(B - C)(C-A ) Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1 - Vì A, B, C chia 3 dư 0 hoặc 1 => Có ít nhất 2 số có cùng số dư khi chia cho 3 => Hiệu của chúng chia hết cho 3 => A - B hoặc B- C hoặc C- A chia hết cho 3 => D chia hết cho 3 (1) - Vì A, B, C chia 4 dư 0 hoặc 1 => Có ít nhất 2 số có cùng số dư khi chia cho 4 => Hiệu của chúng chia hết cho 4 => A-B hoặc B- C hoặc C - A chia hết cho 4 => Dchia hết cho 4 (2) Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => Dchia hết cho 3 x 4 => D chia hết cho 12