K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk nghĩ B<A

20 tháng 3 2016

é* can cai kiu tra loi do

20 tháng 4 2019

\(A=\frac{10^{2012}+1}{10^{2013}+1}\)

\(10A=\frac{10\cdot\left[10^{2012}+1\right]}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(B=\frac{10^{2013}+1}{10^{2014}+1}\)

\(10B=\frac{10\cdot\left[10^{2013}+1\right]}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Mà \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)

Nên \(10A>10B\)

Hay \(A>B\)

Vậy : A > B

23 tháng 5 2018

TA có :

A = \(\frac{10^{2012}-2}{10^{2013}-1}\)=> 10A = \(1-\frac{19}{10^{2013}-1}\)

B = \(\frac{10^{2013}-2}{10^{2014}-1}\)=> 10B = 1 - \(\frac{19}{10^{2014}-1}\)

Vì \(1-\frac{19}{10^{2013}-1}\)< 1 - \(\frac{19}{10^{2014}-1}\)hay 10A < 10B => A < B

Vậy A < B

7 tháng 3 2016

Minh chi biet lam cau b thoi ak

b) Giai:

B=10^16+1 tren 10^17 +1 <10^16+1+9 tren 10^17+1+9

 ma 10^16+1+9 tren 10^17+1+9 = 10^16+10 tren 10^17+10

                                               =10(10^15+1) tren 10(10^16+1)

                                               =10^15+1 tren 10^16+1 =A

=>A>B

Cho y kien voi!                                                                                      

DÀI LẮM BN AK MK KO VIẾT NỔI

27 tháng 4 2018

vì B<1 => \(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\)\(\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}\)\(=\frac{10^{2012}+1}{10^{2013}+1}=A\)

\(\Rightarrow A>B\)

27 tháng 4 2018

\(\frac{10^{2012}+1}{10^{2013}+1}=\frac{\left(10^{2012}+1\right)\cdot10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+10}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1+9}{\left(10^{2013}+1\right)\cdot10}=\frac{10^{2013}+1}{\left(10^{2013}+1\right)\cdot10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2013}+1\right)\cdot10}\left(1\right)\)

\(\frac{10^{2013}+1}{10^{2014}+1}=\frac{\left(10^{2013}+1\right)\cdot10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+10}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1+9}{\left(10^{2014}+1\right)\cdot10}=\frac{10^{2014}+1}{\left(10^{2014}+1\right)\cdot10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}=\frac{1}{10}+\frac{9}{\left(10^{2014}+1\right)\cdot10}\left(2\right)\)Từ (1)(2) => A > B

21 tháng 1 2016

\(\Rightarrow10A=10.\left(\frac{10^{2012}+1}{10^{2013}+1}\right)=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

\(\Rightarrow10B=10.\left(\frac{10^{2013}+1}{10^{2014}+1}\right)=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

Ta có: 1 = 1; 9 = 9

Mà \(10^{2013}+1<10^{2014}+1\)

=> \(\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)

=> \(1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\text{ hay }10A>10B\)

=> \(A>B\).

15 tháng 1 2017

A < B nha!

13 tháng 1 2018

\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

Vậy A > B

13 tháng 1 2018

Áp dụng bất đẳng thức :

\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)

Ta có :

\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

\(\Leftrightarrow B< A\)

12 tháng 4 2015

2.               TA CÓ:    D=\(\frac{2011+2012}{2012+2013}\)

                                   =\(\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

                  VÌ  2012+2013>2012 

                  MÀ \(\frac{2011}{2012+2013}<\frac{2011}{2012}\)(1)

                 VÌ  2012+2013>2013

                 MÀ \(\frac{2012}{2012+2013}<\frac{2012}{2013}\)(2)

                 TỪ (1) VÀ (2)     \(\Rightarrow\frac{2011+2012}{2012+2013}<\frac{2011}{2012}+\frac{2012}{2013}\)

                VẬY C > D

5 tháng 7 2017

a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)

Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)

\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)

Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)

Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)

b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)

Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)

Vậy A > B 

Có gì  sai cho sorry

a,

\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)

b,

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)