CMR:phân số 11n+1/12n+1 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là UCLN(4n+1;12n+7)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\12n+7⋮d\end{matrix}\right.\)
\(\Leftrightarrow3\left(4n+1\right)-12n-7⋮d\)
\(\Leftrightarrow12n+3-12n-7⋮d\)
\(\Leftrightarrow-4⋮d\)
\(\Leftrightarrow d\inƯ\left(-4\right)\)
\(\Leftrightarrow d\in\left\{1;-1;2;-2;4;-4\right\}\)(1)
Ta có: 4n+1 và 12n+7 là hai số lẻ
nên ƯCLN(4n+1;12n+7) là số lẻ
hay d là số lẻ
\(\Leftrightarrow d⋮2̸\)(2)
Từ (1) và (2) suy ra \(d\in\left\{1;-1\right\}\)
hay d=1
\(\LeftrightarrowƯCLN\left(4n+1;12n+7\right)=1\)
\(\Leftrightarrow\dfrac{4n+1}{12n+7}\) là phân số tối giản(đpcm)
Gọi d thuộc ƯC (12n+1, 30n+2).
Ta có:
12n+1 chia hết cho d, 30n+2 chia hết cho d
=> 12n+1 - 30n+2 chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=> 60n+5 - 60n+4 chia hết cho d
=> (60n - 60n) + (5-4) chia hết cho d
=> 1 chia hết cho d
=> d = 1 hoặc d = -1
Vậy phân số trên là phân số tối giản.
12n+1/30n+2 tối giản <=> ƯCLN(12n+1,30n+2)=1
Đặt ƯCLN(12n+1,30n+2)=d (d thuộc N*)
Ta có:12n+1 chia hết cho d =>5(12n+1) chia hết chod=>60n+5 chia hết cho d
30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d
=>60n+5-(60n+4) chia hết cho d
<=> 60n+5-60n-4 chia hết cho d
=>1 chia hết cho d. d thuộc N* =>d =1
=>ƯCLN(12N+1,30N+2)=1
Vậy Phân số 12n+1/30n+2 là tối giản
Gọi ƯCLN( 12n+1 , 30n+2 ) = d ( d E Z ) => \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\) => ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d => 1 \(⋮\) d => d E { 1 ; -1 } Vậy PS \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Gọi d là WCLN của 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d và 30n + 1 chia hết d
=> 5(12n+1 ) chia hết d và 2( 30n + 1) chia hết d
=> 60n+5 chia hết cho d và 60n + 4 chai hết cho d
=> (60n+5)-(60+4) chia hết cho d => 1 chia hết d
=> d=1
Vạy mội p/s có dạng 12n+1/30n+2 đều là p/s tối giản
De 12n+1/30n+2la phan so toi gian thi 12n+1 va 30n+2 co UCLN la 1
Goi d la UCLN(12n+1;30n+2)
12n+1 chia het cho d ; 30n+2 chia het cho d
=>(30n+2)-(12n+1) chia het cho d
=30n+2-12n-1 chia het cho d
=(30n-12n)+(2-1) chia het cho d
8n chia het cho d la 1 chia het cho d
=> n=8n thi 12n+1/30n+2 la phan so toi gian
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Gọi \(d=ƯC\left(11n+1;12n+1\right)\)
\(\Rightarrow12\left(11n+1\right)-11\left(12n+1\right)⋮d\)
\(\Rightarrow121n+12-121n-11⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\dfrac{11n+1}{12n+1}\) là phân số tối giản