Cho x2016+a. Tìm a sao cho x2016+a chia hết cho x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x1,..x2016 thỏa mãn:1/x1^2+...+1/x2016^2=1CM trong các số từ x1->x2016 có ít nhất 2 số bằng nhau
a) 2016x = 2017x
=> 2016x - 2017x =0
=> x(2016 - 2017) =0
=> x(-1)=0
=>x=0:(-1)=0
b) (x-5)2015=(x-5)2014
=> (x-5)2015 - (x-5)2014=0
=> (x-5)(2015-2014)=0
=> x-5=0
=>x=5
c)5x + 5x +2 =650
=> 10x + 2 =650
=> 10x =648
=> x = \(\frac{648}{10}=64,8\)
d) 2017x =2x
=> 2017x -2x =0
=> 2015x=0
=>x=0
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)
\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)
\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)
...................................................................................................................
2016 x 2016-2000 x 2032
=2016 x (2000+16)-2000 x (2016+16)
=2016 x 2000+2016 x 16-2000 x 2016-2000 x 16
=2016 x 16-2000 x 16
=(2016-2000) x 16
=16 x 16
=256
2016 x 2016 - 2000 x 2032
= 2016 x 2016 - 2000 x ( 2016 + 16 )
= 2016 x 2016 - 2000 x 2016 - 2000 x 16
= 2016 x ( 2016 - 2000 ) - 2000 x 16
= 2016 x 16 - 2000 x 16
= 16 x ( 2016 - 2000 )
= 16 x 16
= 256
Cấm ai chép nhé
= 64000 + 256
= 64256
Đáp án B
Để f(x) liên tục tại x = 1 thì lim x → 1 f ( x ) = f ( 1 ) . Ta có:
lim x → 1 f ( x ) = l i m x 2016 + x - 1 2018 x + 1 - x + 2018 = lim x → 1 2016 x + 1 1009 2018 x + 1 - 1 2 x + 2018 = 2 2019
Vậy k = 2 2019 .
cái này trong violympic.
Đáp án là a=-1
chỉ mình lời giải đi!