K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2016

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

29 tháng 12 2020

ĐK: a,b,c \(\ne\) 0

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Với \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}\)

\(\Rightarrow\) \(\dfrac{1}{b}+\dfrac{1}{c}=0\) \(\Rightarrow\) \(\dfrac{b+c}{bc}=0\) \(\Rightarrow\) b + c = 0 (vì bc \(\ne\) 0 do a,b,c \(\ne\) 0)

\(\Rightarrow\) b = -c \(\Rightarrow\) b5 = (-c)5 \(\Rightarrow\) b5 + c5 = 0

Thay b5 + c5 = 0 vào M ta được:

M = (a19 + b19).(b5 + c5).(c2001 + a2001)

M = (a19 + b19).0.(c2001 + a2001)

M = 0 (đpcm)

Chúc bn học tốt!

 

30 tháng 12 2020

cảm ơn bn nha:))!!