Giá trị lớn nhất của A=xy
biết x,y>0 thỏa mãn
x+y=2căn(3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$(4xy)^2=(x+y)^2\geq 4xy$
$\Rightarrow 4xy\geq 1\Rightarrow xy\geq \frac{1}{4}$
Bây giờ, cho $x=2; y=\frac{2}{7}$ thỏa mãn điều kiện đề. Nhưng $xy=\frac{4}{7}>\frac{1}{3}$ nên tập giá trị $P=xy$ không thể là $[\frac{1}{4}; \frac{1}{3}]$ được.
Sử dụng Bdt thức \(ab\le\left(\frac{a+b}{2}\right)^2\) với \(a,b>0\).
Tự chứng minh
\(------------------\)
Áp dụng bđt trên, ta có:
\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Kết luận: .....
Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :
\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)
TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)
\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)
Cộng 3 vế BĐT , ta được :
\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le3\)
Dấu ' = " xảy ra khi x = y = z = 1
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...
ta có \(2\sqrt{3}=x+y\ge2\sqrt{xy}\)
<=>\(\sqrt{xy}\le\sqrt{3}\Leftrightarrow xy\le3\)
==> GTLN của xy=3 <=> x=y=căn 3