Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/ x^2+y^2+z^2-xy-yz-zx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)
\(=x+y+z\)
\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)
Đặt \(N=x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)
(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là \(x^2+y^2+z^2-xy-yz-zx\) nhé!
Ta có:
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)
Đáp án:
Giải thích các bước giải:
Ta có:
Vậy .
Lời giải:
a)
\(\frac{x^4-3x^2+1}{x^4-x^2-2x-1}=\frac{(x^4-2x^2+1)-x^2}{(x^4-x)-(x^2+x+1)}=\frac{(x^2-1)^2-x^2}{x(x^3-1)-(x^2+x+1)}\)
\(=\frac{(x^2-1-x)(x^2-1+x)}{x(x-1)(x^2+x+1)-(x^2+x+1)}=\frac{(x^2-1-x)(x^2-1+x)}{(x^2+x+1)(x^2-x-1)}=\frac{x^2+x-1}{x^2+x+1}\)
\(=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)
b)
Xét tử số:
\(x^3+y^3+z^3-3xyz=(x+y)^3-3xy(x+y)+z^3-3xyz\)
\(=[(x+y)^3+z^3]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)\)
\(=(x+y+z)[(x+y)^2-(x+y)z+z^2-3xy]\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Do đó:
\(\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-xz}=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{x^2+y^2+z^2-xy-yz-xz}=x+y+z\)
Ta có: \(\frac{x^3}{x^2+z}=\frac{x^3+xz}{x^2+z}-\frac{xz}{x^2+z}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\)
Lại có: \(\sqrt{z}\le\frac{z+1}{2}\)
\(\Rightarrow\frac{x^3}{x^2+z}\ge x-\frac{z+1}{4}\)
Tương tự cộng vào ta có:
\(VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)
Lại có: \(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow x+y+z\ge3\)
\(\ge VT\ge\frac{3}{4}.3-\frac{3}{4}=1,5\)
Dấu = xảy ra khi x=y=z=1
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
Bạn trả lời rõ dùm mình với