K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

thx bạn

 

a: Xét (O) có

MA,MH là tiếp tuyến

nên MA=MH

mà OA=OH

nên OM là phân giác của góc AOH(1) và HM=MA

Xét (O) có

NH,NB là tiếp tuyến

nên NH=NB và ON là phân giác của góc HOB(2)

Từ (1), (2) suy ra góc MON=1/2*180=90 độ

AM*BN=HM*HN=OH^2=R^2

b: AM+BN=HN+HM>=2*OH=AB

Dấu = xảy ra khi MN=AB

=>H trùng với O

25 tháng 12 2021

b: Xét (O) có

MC là tiếp tuyến

MA là tiếp tuyến

Do đó: MC=MA

Xét (O) có

NC là tiếp tuyến

NB là tiếp tuyến

Do đó: NC=NB

Ta có: MN=MC+NC

nên MN=MA+NB

17 tháng 9 2021

bạn tự vẽ hình giúp mik nha

a) áp dụng t/c 2 tiếp tuyến cắt nhau ta có

OM là tia phân giác \(\widehat{AOI}\)

ON là tpg \(\widehat{IOB}\)

mà:\(\widehat{AOI}+\widehat{BOI}=180^o\)\(\Rightarrow OM\perp ON\)(t/c 2 góc kề bù)

vậy \(\widehat{MON}=90^o\)

b)từ t/c 2 tiếp tuyến cắt nhau ta có

MA=MI;BN=NI

\(\Rightarrow\)AM+BN=MI+NI=MN9(đpcm)

c)ta có:AM.BN=MI.NI(1)

xét \(\Delta MON\) vuông tại O có

MI.NI(đlý)=\(OI^2=R^2\)(2)

từ (1) và (2)\(\Rightarrow AM.BN=R^2\)

25 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

27 tháng 10 2021

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét (O) có 

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

nên CD=CA+DB

27 tháng 10 2021

mình cần phần d, f

21 tháng 11 2022

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ