chứng minh rằng
1/2^2+1/3^2+1/4^2+.....+1/10^2<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta thấy:
\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
\(\Rightarrow B< \dfrac{1}{4}\)
Ta lại thấy:
\(B>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)
\(\Rightarrow B>6\)
\(\Rightarrow\dfrac{1}{6}< B< \dfrac{1}{4}\left(dpcm\right)\)
Hello Cúp Bơ Quang, ta là Phát đây. Mi bí bài đó hả, ta cũng chẳng biết.
Sai đề rồi.
Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
Giải như sau:
\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
d=1/2^2+1/3^2+1/4^2+...+1/10^2<1/1.2+1/2.3+1/3.4+...+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10<1
=>ĐPCM
nhớ **** cho mình nha