K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

xin lỗi chị em mới học lớp 5

16 tháng 3 2016

b; S=(3^0+3^2+3^4)+......+(3^1998+3^200+3^202)

       =91+.....3^1998*(1+3^2+3^4)

       =91+.....+3^1998*91

       =91+.....+3^1998*13*7 => S chia het cho 7

7 tháng 6 2016

s = 3 ^0 + 3 ^ 2 + 3^ 4+ 3 ^6 +... + 3 ^2002

9S =  3 ^4 + 3^6 + 3 ^ 2004

9S - S= 3 ^ 2004 - 1

8S = 3^2004 - 1

S = 3 ^ 2004 - 1/8

k mk nha

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Lời giải:

$S=3^2+3^4+3^6+...+3^{998}+3^{1000}$

$3^2S=3^4+3^6+3^8+...+3^{1000}+3^{1002}$

$\Rightarrow 3^2S-S=3^{1002}-3^2$
$\Rightarrow 8S=3^{1002}-9$

$\Rightarrow S=\frac{3^{1002}-9}{8}$

b.

$S=3^2+3^4+(3^6+3^8+3^{10})+(3^{12}+3^{14}+3^{16})+...+(3^{996}+3^{998}+3^{1000})$

$=90+3^6(1+3^2+3^4)+3^{12}(1+3^2+3^4)+...+3^{996}(1+3^2+3^4)$

$=90+(1+3^2+3^4)(3^6+3^{12}+...+3^{996})$

$=90+91(3^6+3^{12}+...+3^{996})$

$=6+ 12.7+7.13(3^6+3^{12}+...+3^{996})$ chia $7$ dư $6$

21 tháng 2 2015

a)nhân S với 32 ta dc:

9S=3^2+3^4+...+3^2002+3^2004

=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)

=>8S=32004-1

=>S=32004-1/8

b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7

ta có:32004-1=(36)334-1=(36-1).M=7.104.M

=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7

 

29 tháng 4 2016

S chia het cho 7

8 tháng 1 2016

Đấm vào chữ ĐÚNG giùm em ạ,

Ai bấm là người đẹp zai,xinh gái,quyến rũ....vv

Nói chung là rất đẹp

xin tick giùm em

8 tháng 1 2016

dễ câu b

câu a dễ tih mu roi tih tong

10 tháng 2 2016

a ) Nhân 9 vào 3 vế của S , ta được :

9S = 32 ( 30 + 32 + 34 + .... + 32002 )

=> 9S = 32 + 34 + 36 + .... + 32004

Lấy biểu thức 9S - S , ta được :

9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )

=> 8S = 32004 - 1

=> S = ( 32004 - 1 ) : 8

ý b tự làm !

10 tháng 2 2016

ai thương mình cho hết âm ai thì sẽ may mắn hết năm

25 tháng 2 2016

Ta có : 32S = 32.( 30 + 32 + 34 + .... + 32002 )

=> 9S = 32 + 34 + 36 + .... + 32004

=> 9S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )

=> 8S = 32004 - 1

=>S =  \(\frac{3^{2004}-1}{8}\)

25 tháng 2 2016

nhân s với 3 là ra

15 tháng 12 2016

 

a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)

b, Xét dãy số mũ : 0;2;4;6;...;2002

Số số hạng của dãy số trên là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số )

Ta ghép được số nhóm là :

1002 : 3 = 334 ( nhóm )

Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)

\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)

Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)

16 tháng 12 2016

CẢM ƠN

 

17 tháng 2 2017

S=\(3^0+3^2+3^4+3^6+.....+3^{2002}\)

3S=\(3^2+3^4+3^6+.....+3^{2002}+3^{2003}\)

3S-S=\(\left(3^2+3^4+3^6+....+3^{2002}+3^{2003}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)

S=\(3^{2003}-3^0\)