Đố
\(\dfrac{9^2.9^3.6}{3^{11}}\)
Tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{9^5.30^3}{3^{15}.5^3.6^2}=\dfrac{3^{10}.3^3.10^3}{3^{15}.5^3.2^2.3^2}=\dfrac{3^{13}.2^3.5^3}{3^{15}.5^3.2^2.3^2}=\dfrac{2}{3^4}=\dfrac{2}{81}\)
a: \(A=\dfrac{16^5\cdot15^5}{2^{10}\cdot3^5\cdot5^4}=\dfrac{2^{20}\cdot3^5\cdot5^5}{2^{10}\cdot3^5\cdot5^4}=2^{10}\cdot5=5120\)
b: \(B=\dfrac{2^{15}\cdot3+2^{19}\cdot10}{2^{12}\cdot26}=\dfrac{2^{15}\left(3+2^4\cdot10\right)}{2^{13}\cdot13}=2^2\cdot\dfrac{163}{13}=\dfrac{652}{13}\)
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
\(A=\dfrac{6^3+3\cdot6^2+3^3}{13}\)
\(=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}\)
=27
Đặt biểu thức cần tính là A, ta có:
A=\(\dfrac{1}{7}\left(\dfrac{7}{3.10}+\dfrac{7}{10.17}+...+\dfrac{7}{73.80}\right)\)
Làm tg tự với những cái khác là ok
$\dfrac{2}{3}=\dfrac{6}{9}\\\dfrac{2}{6}=\dfrac{3}{9}\\\dfrac{3}{2}=\dfrac{9}{6}\\\dfrac{6}{2}=\dfrac{9}{3}$
\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)
\(=\dfrac{3^4\cdot3^6\cdot3\cdot2}{3^{11}}=2\)
\(\dfrac{9^2.9^3.6}{3^{11}}=\dfrac{\left(3^2\right)^2.\left(3^2\right)^3.3.2}{3^{11}}=\dfrac{3^4.3^6.3.2}{3^{11}}=\dfrac{3^{11}.2}{3^{11}}=2\)