1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(f\left(x\right)=ax+b\)
+) \(f\left(1\right)=1\)
=> \(f\left(1\right)=a\cdot1+b=1\)
=> \(f\left(1\right)=a+b=1\)(1)
+) \(f\left(2\right)=4\)
=> \(f\left(2\right)=a\cdot2+b=4\)
=> \(f\left(2\right)=2a+b=4\)(2)
Từ (1) và (2) => \(\orbr{\begin{cases}a+b=1\\2a+b=4\end{cases}}\)
=> \(a-2a=1-4\)
=> \(-a=-3\)
=> \(a=3\)
Thay a = 3 vào ta có : \(\orbr{\begin{cases}3+b=1\\2\cdot3+b=4\end{cases}}\)
=> \(\orbr{\begin{cases}3+b=1\\6+b=4\end{cases}}\)
=> b = -2
Vậy a = 3 và b = -2
b) Thay a = 3 và b = -2 vào đa thức \(f\left(x\right)=ax+b\)ta có :
\(f\left(x\right)=3\cdot x+\left(-2\right)=0\)
=> \(3x+\left(-2\right)=0\)
=> \(3x=0-\left(-2\right)\)
=> \(3x=0+2\)
=> \(3x=2\)
=> \(x=\frac{2}{3}\)
Vậy nghiệm của đa thức \(f\left(x\right)=\frac{2}{3}\).
ta có
\(\hept{\begin{cases}f\left(1\right)=1\\f\left(2\right)=4\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}}}\)
lấy hiệu hai phương trình ta có :
\(\left(2a+b\right)-\left(a+b\right)=4-1\Leftrightarrow a=3\Rightarrow b=-2\)
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
ta có: f(1)=a.1+b=a+b
do f(1)=1 nên a+b=1 (1)
lại có: f(2)=a.2+b=2a+b
do f(2)=4 nên 2a+b=4 (2)
từ (1) (2) => a=3; b=-2
Ta có: f(0) = \(a.0^2+b.0+c=4\)
\(\Rightarrow0+0+c=4\Rightarrow c=4\)
\(f\left(1\right)=a.1^2+b.1+c=3\)
\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)
\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)
Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)
\(\Rightarrow a=2:2=1\)
\(\Rightarrow b=-1-1=-2\)
Vậy a=1;b=-2;c=4
Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)
Ta có \(f\left(x\right)=ãx^2+bx+c\)
-Thay x=0 vào đa thức \(f\left(x\right)\) ta được:
\(f\left(0\right)=a.0^2+b.0+c=c=4\)
\(\Rightarrow c=4\)
-Thay x=1 vào đa thức \(f\left(x\right)\)ta được:
\(f\left(1\right)=a.1^2+b.1+c=a+b+c=3\)
mà \(c=0\Rightarrow a+b=0\)\(\left(1\right)\)
-Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:
mk làm tiếp :Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\)
\(=a-b+3=7\)
\(\Rightarrow a-b=4\)\(\left(2\right)\)
-Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra:
\(\left(a+b\right)+\left(a-b\right)=0+4=4\)
\(\Rightarrow a+b+a-b=4\)
\(\Rightarrow2a=4\Rightarrow a=2\)
-Có :\(a-b=4\Rightarrow2-b=4\Rightarrow b=-2\)
Vậy \(a=2,b=-2,c=3\)