Tìm n nguyên để biểu thức có giá trị nguyên
A=3n+1/n+1 (với khác -1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A là số nguyên thì n - 1 là ước nguyên của 1
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Ai thấy đúng thì ủng hộ nha !!!
Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1
để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)
=> n-1 thuộc {-1;1}
=> n thuộc {0; 2}
Để biểu thức A có giá trị nguyên thì 3n + 1\(⋮\)n + 1
Ta có :
3n + 1 \(⋮\)n + 1
\(\Leftrightarrow\)3(n + 1) - 3 + 1 \(⋮\)n + 1
\(\Leftrightarrow\)- 2 \(⋮\)n + 1
\(\Leftrightarrow\)n + 1 \(\in\)Ư(- 2) = {\(\pm\)1 ; \(\pm\)2}
\(\Leftrightarrow\)n \(\in\){ 0 ; - 2 ; 1 ; - 3}
Để A nguyên => 3A nguyên
Khi đó \(3A=\frac{6n-9}{3n-1}=\frac{6n-2-7}{3n-1}=\frac{2\left(3n-1\right)-7}{3n-1}=2-\frac{7}{3n-1}\)
Vì \(2\inℤ\Rightarrow\frac{-6}{3n-1}\inℤ\Rightarrow-7⋮3n-1\Rightarrow3n-1\inƯ\left(-7\right)\)
=> \(3n-1\in\left\{1;7;-1;-7\right\}\)
=> \(3n\in\left\{2;8;0;-6\right\}\)
Vì n nguyên => \(3n\in\left\{0;-6\right\}\Rightarrow n\in\left\{0;-2\right\}\)
Vậy n \(\in\left\{0;-2\right\}\)
a, với n thuộc Z
Để A là một số nguyên thì 3n + 1 chia hết cho n+1
mà n + 1 chia hết n +1
=> (3n+1) - 3. (n+1) chia hết cho n+1
<=> (3n+1)-( 3n +3) chia hết cho n+1
<=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)= {+-1; +-4; +-2}
nếu ............
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
\(\dfrac{3n+1}{3n-4}\left(n\in Z\right)\\ =\dfrac{3n-4+5}{3n-4}=1+\dfrac{5}{3n-4}\)
Để biểu thức đạt gt nguyên thì : \(\dfrac{5}{3n-4}\in Z\)
\(=>3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\\ =>3n\in\left\{5;3;9;-1\right\}\\ =>n\in\left\{\dfrac{5}{3};1;3;-\dfrac{1}{3}\right\}\)
Do n nguyên -> Kết luận : \(n\in\left\{1;3\right\}\)
\(\dfrac{3n+1}{3n-4}\) \(=\dfrac{3n-4+5}{3n-4}\) \(=1+\dfrac{5}{3n-4}\)
Để biểu thức nhận giá trị nguyên thì \(5⋮\left(3n-4\right)\)
\(\Rightarrow\left(3n-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(3n-4\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-\dfrac{1}{3}\) | \(1\) | \(\dfrac{5}{3}\) | \(3\) |
Vậy \(x=1\) hoặc \(x=3\) thì biểu thức \(\dfrac{3n+1}{3n-4}\) nhận giá trị nguyên
Để A = -5/n-1 là số nguyên <=> - 5 ⋮ n - 1
=> n - 1 ∈ Ư ( - 5 ) = { - 5 ; - 1 ; 1 ; 5 }
=> n - 1 = { - 5 ; - 1 ; 1 ; 5 }
=> n = { - 4 ; 0 ; 2 ; 6 }
A= \(\frac{-5}{n-1}\) nguyên
-5 chia hết cho n - 1
n - 1 thuộc U(-5) = {-5 ; - 1 ; 1 ; 5}
n - 1= -5 => n = -4
n - 1 = -1 => n = 0
n - 1 = 1 => n = 2
n - 1 = 5 => n = 6
Vậy n thuộc {-4 ; 0 ; 2 ; 6}
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
Chúc em học tốt^^
Để phân số trên thỏa mãn điều kiện thì:
3n+4 chia hết cho n-1
3n+4=3n-3+7
=3.(n-1)+7
Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1
n-1 thuộc +-1;+-7
Thử các trường hợp ra,ta có:
n thuộc:0;2;8;-6.
ta có 3n+1 phải chia hết cho n-1
3n+1=3n+3-2=3(n+1)-2
Mà 3(n+1) chia hết cho n+1
Nên để 3(n+1)-2 chia hết cho n+1 thì 2 chia hết cho n+1
nên n+1 thuộc ước của 2
nên bạn tự làm nốt nhé