K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Rồi gì nữa bạn?

a: Xét ΔOAM vuông tại A vầ ΔOBP vuông tại B có

OA=OB

góc AOM=góc BOP

Do đó: ΔOAM=ΔOBP

=>OM=OP

Xét ΔNMP có

NO vừa là đường cao, vừa là trung tuyến

nên ΔNMP cân tại N

b: góc NMO=góc NPO

=>góc NMO=góc AMO

Xét ΔMAO và ΔMIO có

MO chung

góc AMO=góc IMO

Do đo: ΔMAO=ΔMIO

=>OI=OA=R 

=>MN là tiếp tuyến của (O)

a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C

ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

=>\(\widehat{OAC}=\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

b:ΔOAC=ΔOBC

=>CB=CA

=>C nằm trên đường trung trực của AB(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

từ (1) và (2) suy ra OC là đường trung trực của BA

=>OC\(\perp\)AB

mà OC//AD

nên AB\(\perp\)AD

=>ΔABD vuông tại A

Ta có: ΔABD vuông tại A

=>ΔABD nội tiếp đường tròn đường kính DB

mà ΔABD nội tiếp (O)

nên O là trung điểm của DB

=>D,O,B thẳng hàng

Xét ΔAKD vuông tại K và ΔCAO vuông tại A có

\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)

Do đó: ΔAKD\(\sim\)ΔCAO

 

8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp