x +(x+1)+(x+2)+(x+3)+.........+ x+2014=2031120
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(g\left(x\right)=\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}}:x^{2015}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\left(\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}+...+\frac{1}{x^{2014}}\right)\cdot x^{2015}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{\frac{x^{2015}}{x}+\frac{x^{2015}}{x^2}+\frac{x^{2015}}{x^3}+...+\frac{x^{2015}}{x^{2014}}}\right]\cdot x^{2015}\)
\(=\left[\frac{x+x^2+x^3+...+x^{2014}}{x^{2014}+x^{2013}+x^{2012}+...+x}\right]\cdot x^{2015}\)
\(=1\cdot x^{2015}=x^{2015}\)
\(\Rightarrow g\left(2014\right)=2014^{2015}=\left(...14\right)^{10^{201}}\cdot\left(...14\right)^5=\left(...76\right)\cdot\left(...24\right)=\left(...24\right)\)
Vậy chữ số hàng đơn vị của g ( 2014 ) là 4. còn chữ số hàng chục của g ( 2014 ) là 2.
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
<=>(x+x+x+...+x)+(1+2+3+...+2014)=2031120
=>2014x+2029105=2031120
=>2014x=2015
=>x=\(\frac{2015}{2014}\)
(x+x+...+x)+(1+2+...+2014)=2031120
2014x+2029105=2031120
2014x=2031120-2029105=2015
x=2015/2014