giúp mình giải bài này với ạ .
CMR : (10^n) -1 chia hết cho 99 với n là số tự nhiên chẵn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm nha CMR 10n - 1 chia hết cho 99 với n là số tự nhiên chẵn
Ta có n là số tự nhiên nên n có 2 dạng : 2k hoặc 2k+1 (k\(\in\)N)
+Th1: n = 2k
\(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)=2\left(2k+3\right)\left(k+3\right)⋮2\)
+Th2: n=2k+1
\(\left(n+3\right)\left(n+6\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)⋮2\)
Vậy với\(\forall n\in N\)thì tích (n+3)(n+6) chia hết cho 2
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
2n+5chia hết cho 2n+1
=>4n+10chia hết cho 4n+2
=>2n+5chia hết cho 2n+1
Ta có: 2n + 5 = (2n - 1) + 6
Do 2n - 1 \(⋮\)2n - 1 => 6 \(⋮\)2n - 1
=> 2n - 1 \(\in\)Ư(6) = {1; 2; 3; 6}
=> 2n \(\in\){2; 3; 4; 7}
Do n \(\in\)N=> n \(\in\){1; 2}
với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia
câu a) 2n +5 = 2n -1 +6
vì 2n -1 chia hết cho 2n -1 nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1
suy ra 2n -1 là ước của 6
vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}
n=1; 2
Lời giải:
Đặt $n=2k$ với $k$ là số tự nhiên. Khi đó:
$10^n-1=10^{2k}-1=1\underbrace{000...0}_{2k}-1$
$=\underbrace{999...9}_{2k}$
$=99\times 10^{2k-2}+99\times 10^{2k-4}+....+99.10^2+99$
$=99\times (10^{2k-2}+10^{2k-4}+...+10^2+1)\vdots 99$
Ta có đpcm.