CMR :
hai số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
a) Gọi 2 số tự nhiên là a,a+1 và (a;a+1)=d
Ta có: a chia hết cho d
a+1 chia hết cho d
=> (a+1)-a =1 chia hết cho d
=> d thuộc Ư(1)={1}
Vậy d=1
=> 2 số tự nhiên là 2 số nguyên tố cùng nhau
b) Gọi 2 số lẻ liên tiếp là a ;a+2 và (a;a+2)=d
Ta có: a chia hết cho d
a+2 chia hết cho d
=> (a+2)-a=2 chia hết cho d
=> d thuộc Ư(2)={1;2}
Và a và a+2 ;à 2 số lẻ liên tiếp nên d ko =2 => d=1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
a)Gọi 2 số tự nhiên liên tiếp là a;a+1
=>a+1-a chia hết cho WCLN của a;a+1
=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b)Gọi 2 số lẻ liên tiếp là a;a+2.
Làm như trên:
Hiệu:a+2-a=2
Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.
Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
c)Gọi WCLN(2n+1;3n+1)=d.
2n+1 chia hết cho d=>6n+3 chia hết cho d.
3n+1 ------------------=>6n+2 chia hết cho d.
Hiệu chia hết cho d,hiệu =1=>...
Vậy là số nguyên tố cùng nhau.
Chúc em học tốt^^
Gọi số thứ nhất là n, số thứ hai là n+1, ƯC(n,n+1)=a
Ta có: n chia hết cho a(1); n+1 chia hết cho a(2)
Từ (1) và (2) ta được:
n+1-n chia hết cho a
=> 1 chia hết cho a
=> a=1
=> ƯC(n,n+1)=1
=> n và n+1 là hai số nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là hai số nguyên tố cùng nhau
các bạn xem mình làm có đúng ko ?
Gọi số tự nhiên thứ nhất là n => số tự nhiên thứ 2 là n + 1
Gọi d là ƯCLN của n và n + 1
hay d thuộc ƯCLN ( n; n+1)
=> [ n - ( n + 1 ) ] chia hết cho d
=> ( n - n - 1 ) chia hết cho d
=> 1 chia hết cho d
=> d là Ư của 1=> d = { 1 }
Vậy ....................................
ai tích mình mình tích lại cho
vi BCNN cua hai so do la h cua hai so