với x>0 GTNN \(M=9x^2+3x+\frac{1}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM-GM 5 số
M=9x^2+3x+1/3x+1/3x+1/3x+1420>=5\(\sqrt[5]{\text{9x^2*3x*1/3x*1/3x*1/3x}}\)+1420>=1425
A = \(\frac{6}{3x}+\frac{6}{2y}+\frac{12}{3x+2y}=6.\left(\frac{1}{3x}+\frac{1}{2y}\right)+\frac{12}{3x+2y}\)
Áp dụng BĐT: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\)với a;b không âm
=> A \(\ge6.\frac{4}{3x+2y}+\frac{12}{3x+2y}=\frac{36}{3x+2y}\)
Mặt khác, (3x + 2y)2 = (3x.1 + 2y.1)2 \(\le\) (12 + 12).(9x2 + 4y2) = 2.18 = 36
=> 0< 3x + 2y \(\le\) 6 => \(\frac{36}{3x+2y}\ge\frac{36}{6}=6\)
=> A \(\ge\) 6.
Vậy Min A = 6 khi 3x = 2y => 18x2 = 18 => x = 1 (do x > 0) => y = 3/2
Bài 2:
Vì x<0
nên x<1
=>|x-1|+|x|+x=1-x-x+x=-x+1
\(M=\dfrac{-x+1}{3x^2-4x+1}=\dfrac{-\left(x-1\right)}{\left(3x-1\right)\left(x-1\right)}=\dfrac{-1}{3x-1}\)
M=9x^2 - 6x + 1 + 9x + 1/x - 1 = ( 3x - 1 )^2 + ( 9x + 1/x ) - 1 ap dung BDT Co Si ta co : 9x + 1/x >= 2.3 = 6 mat #: ( 3x - 1 )^2 >= 0 => M >= 0 + 6 - 1 = 5 dau =xay ra khi va chi khi x = 1/3
Với x > 0 => x = 1 thì M nhỏ nhất => 9 +3 + 1 = 13.. check mk nhá