K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

lớp mấy vậy anh

e có cj học lớp 11

14 tháng 9 2020

A = 3 + 32 + 33 + ... + 3100

⇔ 3A = 3( 3 + 32 + 33 + ... + 3100 )

⇔ 3A = 32 + 33 + ... + 3101

⇔ 2A = 3A - A

          = 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )

          = 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100

          = 3101 - 3

2A + 3 = 3x+100

⇔ 3101 - 3 + 3 = 3x+100

⇔ 3101 = 3x+100

⇔ 101 = x + 100

⇔ x = 1

Vậy x = 1

14 tháng 9 2020

                                                        Bài giải

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=2A=3^{101}-3\)

Ta có : \(2A+3=3^{x+100}\)

\(3^{101}-3+3=3^{x+100}\)

\(3^{101}=3^{x+100}\)

\(\Rightarrow\text{ }x+100=101\)

\(\Rightarrow\text{ }x=1\)

16 tháng 10 2021

B=2+22+23+...+2100

2B=22+23+24+...+2101

2B-B=(22+23+24+...+2101)-(2+22+23+...+2100)

B=2101-2

Theo như đề bài thì B+2=2X mà B=2101-2

Vậy B+2=2101-2+2=2101=2x

Suy ra x=101 

Đáp số 101

 

16 tháng 10 2021

\(3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =\left(1+3\right)\left(3+3^3+...+3^{59}\right)\\ =4\left(3+3^3+...+3^{59}\right)⋮4\\ 3+3^2+3^3+...+3^{60}\\ =\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ =3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ =13\left(3+3^4+...+3^{58}\right)⋮13\)

16 tháng 10 2021

thanks