K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)

\(\Rightarrow a^2+3-4a=0\)

=> (a - 3).(a - 1) = 0

=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)

Bình phương lên giải tiếp nhé!

c) Tương tư câu b nhé

 

5 tháng 6 2020

(x - 1)(2x² - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0

\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)

5 tháng 6 2020

a)

\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)

b)

\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

c)

\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)

\(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)

\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

28 tháng 11 2021

a, ĐKXĐ: ...

\(\sqrt{3x^2-2x+6}+3-2x=0\)

\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)

\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)

\(\Leftrightarrow4x^2-10x+3=0\)

.....

b, ĐKXĐ: ...

\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)

7 tháng 10 2021

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

7 tháng 10 2021

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

c: =>(x+2)(x+3)(x-5)(x-6)=180

=>(x^2-3x-10)(x^2-3x-18)=180

=>(x^2-3x)^2-28(x^2-3x)=0

=>x(x-3)(x-7)(x+4)=0

=>\(x\in\left\{0;3;7;-4\right\}\)

c: =>(x-3)(x+2)(2x+1)(3x-1)=0

=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)

23 tháng 3 2020

a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>

2x+1=0<=>x=\(-\frac{1}{2}\)

hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)

Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))

b)\(\left(x^2+4\right)\left(7x-3\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)

\(x^2=-4\) vô lí

Vậy ..........

c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)

<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)

\(x^2+x+1>0\)(dễ dàng c/m)

=>6-2x=0=>x=3

Vậy...

d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

<=>8x-4=0,x=\(\frac{1}{2}\)

hoặc \(x^2+2x+2=0\)(vô lí)

Vậy .....