mn = 9a,2b sau do m+n =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5a+2b⋮17 ⇒ 9a+7b⋮17
Vì 5a+2b ⋮ 17 ⇒ 5(5a+2b) ⋮ 17
⇒ 25a+10b ⋮ 17
Ta có : (25a+10b) + (9a+7b) = 25a+10b+9a+7b
= 34a + 17b = 17(2a+b) ⋮ 17
Do đó : (25a+10b) + (9a+7b) ⋮ 17
mà 25a + 10b ⋮ 17 ⇒ 9a + 7b ⋮ 17
Vậy nếu 5a + 2b ⋮ 17 ⇒ 9a + 7b ⋮ 17
b) 9a + 7b ⋮ 17 ⇒ 5a + 2b ⋮ 17
Vì 9a + 7b ⋮ 17 ⇒ 7(9a+7b) ⋮ 17
⇒ 63a + 49b ⋮ 17
Ta có : (63a + 49b) + (5a+2b) = 63a + 49b + 5a + 2b
= 68a + 51b = 17(4a+3b) ⋮ 17
Rồi làm tương tự như câu a nhé
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
ĐK \(2b< 3a< 0\) ( đoạn này mk cho thêm điều kiện nhá, hình như bạn thiếu )
\(M^2=\frac{9a^2+4b^2-12ab}{9a^2+4b^2+12ab}=\frac{20ab-12ab}{20ab+12ab}=\frac{8ab}{32ab}=\frac{1}{4}\)
Do \(2b< 3a< 0\Rightarrow3a-2b>0,3a+2b< 0\Rightarrow M< 0\)
Vậy \(M=-\frac{1}{2}\)
m+n=10 nha.Chính xác 100% lun câu này mình làm rồi.Tick nha bạn