Cho hàm số y =ax^2 (P) a Tìm a để P đi qua M(1;2) vẽ đồ thị với a tìm được b) với a tìm được ở trên điểm B( -1; 2) có thuộc (P) không Vì sao c) với a ở trên tìm tọa độ giao điểm của (P) với đường thẳng y = -x + 2 d) với a ở trên tìm các điểm thuộc (P) có tung độ bằng 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Vì (d) đi qua A(-2;5) và B(1;-4) nên ta có hệ phương trình:
-2a+b=5 và a+b=-4
=>a=-3; b=-1
2:
a: Để hàm số đồng biến thì 2m-1>0
=>m>1/2
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
133333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
a: Thay x=1 và y=-2 vào y=ax, ta được:
1xa=-2
hay a=-2
Câu 1: để hàm số có đồ thị hàm số đi qua điểm A và B nên tọa độ của A,B thỏa mãn đồ thị nên ta có hệ
\(\hept{\begin{cases}-2a+b=5\\a+b=-4\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=-1\end{cases}}\)
Câu 2 :
- để hàm số luôn nghịch biến thì hệ số góc của đường thẳng nhỏ hơn 0 nên : \(2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
- Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng \(\frac{-2}{3}\)tức giao điểm có tọa độ \(\left(-\frac{2}{3};0\right)\)nên có phương trình :\(0=\frac{-2\left(2m-1\right)}{3}+m+2\Leftrightarrow-4m+2+3m+6=0\Leftrightarrow m=8\)
a) Vì hàm số y=ax+b song song với y=2x-3 nên a=2
Vậy: y=2x+b
Thay x=1 và y=-2 vào y=2x+b, ta được:
\(2\cdot1+b=-2\)
hay b=-4
Vậy: y=2x-4
b) Vì y=ax+b đi qua A(1;-2) và B(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-2\\2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=-5\\a+b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=-7\end{matrix}\right.\)
Vậy: y=5x-7
\(a,\Leftrightarrow a\cdot1^2=2\Leftrightarrow a=2\\ b,\left(P\right):y=2x^2\\ \text{Thay }x=-1;y=2\Leftrightarrow2\left(-1\right)^2=2\left(đúng\right)\\ \Leftrightarrow B\in\left(P\right)\\ c,\text{PT hoành độ giao điểm: }2x^2=-x+2\Leftrightarrow2x^2+x-2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{17}}{4}\Leftrightarrow y=\dfrac{9-\sqrt{17}}{4}\rightarrow A\left(\dfrac{-1+\sqrt{17}}{4};\dfrac{9-\sqrt{17}}{4}\right)\\x=\dfrac{-1-\sqrt{17}}{4}\Leftrightarrow y=\dfrac{9+\sqrt{17}}{4}\rightarrow B\left(\dfrac{-1-\sqrt{17}}{4};\dfrac{9+\sqrt{17}}{4}\right)\end{matrix}\right.\)