cho tam giác ABC vuông tại A. Kẻ AD vuông góc với BC (D thuộc BC). Trên đường thẳng vuông góc BC lấy điểm E sao cho CE=AD (E,A thuộc nửa mặt phẳng bờ chứa canh CD). CMR: a) tam giác ADC= tam giác ECD; b) DE vuông góc với AB; c) góc CED=góc ABC
giúp mik vs cần gấp lắm
b: Xét tứ giác ACED có
AD//CE
AD=CE
Do đó: ACED là hình bình hành
Suy ra: AC//ED
hay ED⊥AB
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho mifh xin tích Ạ