K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2015

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                                                       \(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)

                                                       \(<1-\frac{1}{2010}\)

                                                       \(<\frac{2009}{2010}<1\)

=>N<1

29 tháng 7 2016

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)

\(A=1-\frac{1}{2^{2011}}\)

Vì \(1-\frac{1}{2^{2011}}< 1-\frac{1}{2^{2010}}\)nên A < \(1-\frac{1}{2^{2010}}\)

Ủng hộ mk nha !!! ^_^

30 tháng 3 2017

cho mk một tk đi bà con ơi

ủng hộ mk đi làm ơn

18 tháng 12 2016

lớn hơn , bé hơn hoặc bằng dễ òm đi chịch hk cưng ?

18 tháng 12 2016

ĐANG CẦN GẤP

1 tháng 8 2017

S=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2010.2011.2012}\)

  =\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)

  =\(\frac{1}{2}-\frac{1}{2011.2012}< \frac{1}{2}\)(Vì \(\frac{1}{2011.2012}>0\))

=> S <\(\frac{1}{2}\)

2 tháng 8 2017

\(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{2010.2011.2012}\)

\(S=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2012-2010}{2010.2011.2012}\)

\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2010.2011}-\frac{1}{2011.2012}\)

\(S=\frac{1}{1.2}-\frac{1}{2011.2012}=\frac{2023065}{4046132}\)

\(\text{Vì}\)\(\frac{2023065}{4046132}< \frac{1}{2}\Rightarrow S< P\)

15 tháng 3 2017

2a-a=1-1/2^99

a<1

15 tháng 3 2017

Bạn có cách giải rõ ràng ko Phúc

30 tháng 7 2015

A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

2A = \(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)

A = 2A - A = \(1-\frac{1}{2^{100}}<1\)

=> A < 1

2 tháng 9 2018

(1 +2010) > 2\(\sqrt{1.2010}\)=> \(\frac{1}{\sqrt{1.2010}}\)> 2/2011 tương tự các phần tử còn lại

vậy C >  2/2011+2/2011+.....2/2011 = 2.2010/2011