Tìm các số nguyên x, y biết: 2x - 2y = 224
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) pt <=> (2x-1)(2y+3)=7
TH1: 2x-1=7 và 2y+3=1
<=> x = 4 và y = -1
TH2: 2x - 1 = -7 và 2y + 3 = -1
<=> x = -3 và y = -2
TH3: 2x-1=1 và 2y+3=7
<=> x = 1 và y=2
TH4: 2x-1=-1 và 2y+3=-7
<=> x=0 và y=-5
2x(2y-14)-8(y-7)=0
=>\(4x\left(y-7\right)-8\left(y-7\right)=0\)
=>\(\left(y-7\right)\left(4x-8\right)=0\)
=>\(\left\{{}\begin{matrix}y-7=0\\4x-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7\\x=2\end{matrix}\right.\)
a) Vì 2x-1 là bội của x+5 nên 2x-1 \(⋮\)x+5
=> x+5 \(⋮\)x+5
=> ( 2x-1) - ( x+5) \(⋮\)x+5
=> (2x-1) - 2(x+5) \(⋮\)x+5
=> 2x -1 - 2x -10 \(⋮\)x+5
=> -11 \(⋮\)x+5
=> x+5 \(\in\)Ư(11) ={ 1;11; -1; -11}
=> x\(\in\){ -4; 6; -6; -16}
Vậy....
\(1,\)
\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)
Do đó PT vô nghiệm
\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
2x2y - x2 -2y - 2 = 0
=>2x2y-x2-2y+1 = 3
=>(2x2y-x2)-(2y-1)=3
=>x2(2y-1)-(2y-1)=3
=>(x2-1)(2y-1)=3
=>x2-1 và 2y-1 thuộc Ư(3)={3;1;-1;-3}
Xét x2-1=3 =>x2=4 =>x=±2 =>2y-1=1 =>y=1
Xét x2-1=1 =>x2=2 (Loại vì x,y nguyên)
Xét x2-1=-1 =>x2=0 =>x=0 =>2y-1=-3 =>y=-1
Xét x2-1=-3 =>x2=-2 (Loại vì bình phương 1 số luôn \(\ge\)0>-2)
Vậy với x=±2 thì y=1 với x=0 thì y=-1
⇔2x2−x+1=xy+2y⇔2x2−x+1=xy+2y
⇔2x2−x+1=y(x+2)⇔2x2−x+1=y(x+2)
⇔y=2x2−x+1x+2=2x−5+11x+2⇔y=2x2−x+1x+2=2x−5+11x+2
Do y nguyên ⇒11x+2⇒11x+2 nguyên ⇒x+2=Ư(11)⇒x+2=Ư(11)
Mà x nguyên dương ⇒x+2≥3⇒x+2=11⇒x=9⇒x+2≥3⇒x+2=11⇒x=9
⇒y=14⇒y=14
Vậy (x;y)=(9;14)
a) \(\left(x-5\right)\left(2y+1\right)=5=\left(-1\right).\left(-5\right)=\left(-5\right).\left(-1\right)=1.5=5.1\)
Lập bảng giá trị ta có:
\(x-5\) | \(-1\) | \(-5\) | \(1\) | \(5\) |
\(x\) | \(4\) | \(0\) | \(6\) | \(10\) |
\(2y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(-3\) | \(-1\) | \(2\) | \(0\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(4;-3\right)\), \(\left(0;-1\right)\), \(\left(6;2\right)\), \(\left(10;0\right)\)
b) \(\left(x+7\right)\left(2x-y\right)=7=\left(-1\right)\left(-7\right)=\left(-7\right).\left(-1\right)=1.7=7.1\)
Lập bảng giá trị ta có:
\(x+7\) | \(-1\) | \(-7\) | \(1\) | \(7\) |
\(x\) | \(-8\) | \(-14\) | \(-6\) | \(0\) |
\(2x-y\) | \(-7\) | \(-1\) | \(7\) | \(1\) |
\(y\) | \(-9\) | \(-27\) | \(-19\) | \(-1\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(-8;-9\right)\), \(\left(-14;-27\right)\), \(\left(-6;-19\right)\), \(\left(0;-1\right)\)
ĐK : (x > y > 0)
Đặt x = y + k
=> 2x - 2y = 224
<=> 2y + k - 2y = 224
<=> 2y(2k - 1) = 224
<=> 2y(2k - 1) : 32 = 224:32
<=> 2y - 5.(2k - 1) = 7
Ta có 7 = 1.7
Lập bảng xét các trường hợp
y = 5 ; k = 3 => y = 5;x = 8
Vậy x = 8 ; y = 5
thank Xyz