tính 2a-5b phần a-3b với a phần b bằng 3 phần 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp mình 2 câu a) và b) nhưng nó bị dính liền chứ đấy là 2 câu khác nhau
Bài 1:
Ta có: x:y:z:t=15:7:3:1
\(\Rightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)
Ta lại có: x-y+z-t=10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{15}=1\\\frac{y}{7}=1\\\frac{z}{3}=1\\\frac{t}{1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)
Vậy: (x,y,z,t)=(15;7;3;1)
Bài 2:
Gọi các phần cần tìm lần lượt là a,b,c,d
Theo đề bài, ta có:
a,b,c,d lần lượt tỉ lệ với 3;5;7;9
\(\Leftrightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\)
và a+b+c+d=12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\frac{a}{3}=\frac{1}{2}\\\frac{b}{5}=\frac{1}{2}\\\frac{c}{7}=\frac{1}{2}\\\frac{d}{9}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1,5\\b=2,5\\c=3,5\\d=4,5\end{matrix}\right.\)
Vậy: bốn phần cần tìm là 1,5; 2,5; 3,5 và 4,5
Bài 3:
Ta có: 2a=3b
\(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
Ta có: 5b=7c
\(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\)
\(\Leftrightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Leftrightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Ta có: 3a+5c-7b=30
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{3a}{63}=2\\\frac{7b}{98}=2\\\frac{5c}{50}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=126\\7b=196\\5c=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=42\\b=28\\c=20\end{matrix}\right.\)
Vậy: (a,b,c)=(42;28;20)
\(a.32,5-3\cdot0,87=32,5-2,61=29,89\)
\(8,5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8,5\cdot\left(\dfrac{3}{2}+\dfrac{4}{4}\right):5\\ =8,5\cdot\left(\dfrac{6}{4}+\dfrac{4}{4}\right):5\\ =8,5\cdot\dfrac{10}{4}:5\\ =\dfrac{85}{4}:5\\ =\dfrac{17}{4}\)
\(b.30,96-6,45+14,4:3=30,96-6,45+4,8\\ =29,31\)
\(\dfrac{2}{5}\cdot\left(\dfrac{4}{5}-\dfrac{1}{2}\right)=\dfrac{2}{5}\cdot\left(\dfrac{8}{10}-\dfrac{5}{10}\right)\\ =\dfrac{2}{5}\cdot\dfrac{3}{10}=\dfrac{3}{25}\)
bài 2
\(a.2,5\cdot12,5\cdot8\cdot0,4=\left(2,5\cdot0,4\right)\left(12,5\cdot8\right)\\ =1\cdot100=100\)
b,\(\dfrac{12}{15}\cdot\dfrac{5}{6}\cdot\dfrac{3}{20}\cdot\dfrac{32}{5}=\dfrac{12\cdot5\cdot3\cdot32}{15\cdot6\cdot20\cdot5}\\ =\dfrac{3\cdot4\cdot5\cdot3\cdot4\cdot8}{3\cdot5\cdot2\cdot3\cdot5\cdot4\cdot5}=\dfrac{16}{25}\)
Bài 1:
a) \(32.5-3\cdot0.87=32.5-2.61=29.89\)
\(8.5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8.5\cdot\dfrac{5}{2}:5=\dfrac{17}{2}\cdot\dfrac{5}{2}:5=\dfrac{85}{4}\cdot\dfrac{1}{5}=\dfrac{17}{4}\)
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)
\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :
\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)
2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5
=14/9
Bài 1:
\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)
\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)
\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)