K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

giúp mình 2 câu a) và b) nhưng nó bị dính liền chứ đấy là 2 câu khác nhau

Bài 1:

Ta có: x:y:z:t=15:7:3:1

\(\Rightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)

Ta lại có: x-y+z-t=10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{15}=1\\\frac{y}{7}=1\\\frac{z}{3}=1\\\frac{t}{1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

Vậy: (x,y,z,t)=(15;7;3;1)

Bài 2:

Gọi các phần cần tìm lần lượt là a,b,c,d

Theo đề bài, ta có:

a,b,c,d lần lượt tỉ lệ với 3;5;7;9

\(\Leftrightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\)

và a+b+c+d=12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{a}{3}=\frac{1}{2}\\\frac{b}{5}=\frac{1}{2}\\\frac{c}{7}=\frac{1}{2}\\\frac{d}{9}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1,5\\b=2,5\\c=3,5\\d=4,5\end{matrix}\right.\)

Vậy: bốn phần cần tìm là 1,5; 2,5; 3,5 và 4,5

Bài 3:

Ta có: 2a=3b

\(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

Ta có: 5b=7c

\(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\)

\(\Leftrightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Leftrightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Ta có: 3a+5c-7b=30

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó:

\(\left\{{}\begin{matrix}\frac{3a}{63}=2\\\frac{7b}{98}=2\\\frac{5c}{50}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=126\\7b=196\\5c=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=42\\b=28\\c=20\end{matrix}\right.\)

Vậy: (a,b,c)=(42;28;20)

16 tháng 4 2021

\(a.32,5-3\cdot0,87=32,5-2,61=29,89\)

\(8,5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8,5\cdot\left(\dfrac{3}{2}+\dfrac{4}{4}\right):5\\ =8,5\cdot\left(\dfrac{6}{4}+\dfrac{4}{4}\right):5\\ =8,5\cdot\dfrac{10}{4}:5\\ =\dfrac{85}{4}:5\\ =\dfrac{17}{4}\)

\(b.30,96-6,45+14,4:3=30,96-6,45+4,8\\ =29,31\)

\(\dfrac{2}{5}\cdot\left(\dfrac{4}{5}-\dfrac{1}{2}\right)=\dfrac{2}{5}\cdot\left(\dfrac{8}{10}-\dfrac{5}{10}\right)\\ =\dfrac{2}{5}\cdot\dfrac{3}{10}=\dfrac{3}{25}\)

bài 2

\(a.2,5\cdot12,5\cdot8\cdot0,4=\left(2,5\cdot0,4\right)\left(12,5\cdot8\right)\\ =1\cdot100=100\)

b,\(\dfrac{12}{15}\cdot\dfrac{5}{6}\cdot\dfrac{3}{20}\cdot\dfrac{32}{5}=\dfrac{12\cdot5\cdot3\cdot32}{15\cdot6\cdot20\cdot5}\\ =\dfrac{3\cdot4\cdot5\cdot3\cdot4\cdot8}{3\cdot5\cdot2\cdot3\cdot5\cdot4\cdot5}=\dfrac{16}{25}\)

 

Bài 1: 

a) \(32.5-3\cdot0.87=32.5-2.61=29.89\)

\(8.5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8.5\cdot\dfrac{5}{2}:5=\dfrac{17}{2}\cdot\dfrac{5}{2}:5=\dfrac{85}{4}\cdot\dfrac{1}{5}=\dfrac{17}{4}\)

15 tháng 2 2017

TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\)    /     A-3B

=\(2.\left(\frac{3}{4}\right)-5\)/     3/4-3

=\(\frac{14}{9}\)

14 tháng 2 2017

\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :

\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)

14 tháng 2 2017

2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5

=14/9

10 tháng 1 2017

Đáp án là D

24 tháng 10 2019

Bài 1:

\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)

\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)

\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)