Tìm các số nguyên tố P sao cho: a,120 chia hết cho P b,366 chia hết cho P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số nguyên
a. 120 = 2.2.2.3.5
P thuộc (1.2,3,5,4,6,10,15,8,12,20,30,24,40,60,120 và số đối của các số này)
b. 366 = 2.3.61
P thuộc (1,6,122,183,366 và số đối của các số này)
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
p>0=>p+7>7
=>p+7 là số lẻ
=>p chẵn
xét p=2=>p+1994=1996(vô lí)
Vậy không có p
abcabc=abc.1001=abc.7.11.13 chia hết cho 7;11;13