Câu 6: ( 1 điểm): Tìm x Biết:
a, 23 + 3x = 56 : 53
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)
Từ đó bạn tìm những giá trị của x nha!
Ta có: 23 + 3x = 56 : 53
23 + 3x = 5(6-3)
23 + 3x = 53
23 + 3x = 125
3x = 125 – 23
3x = 102
x = 102 : 3
x = 34
a, 3 x + 1 : 3 4 = 81
3 x - 3 = 3 4
x – 3 = 4
x = 7
Vậy x = 7
b, 3 x + 3 . 3 x + 1 = 729
3 2 x + 4 = 3 6
2x + 4 = 6
x = 1
Vậy x = 1
c, 2 x + 3 . 2 x = 128
2 2 x + 3 = 2 7
2x + 3 = 7
x = 2
Vậy x = 2
d, 23 + 3 x = 5 6 : 5 3
23 + 3 x = 5 3
23 + 3x = 125
3x = 102
x = 34
Vậy x = 34
e, 2 x + 2 x + 4 = 272
2 x + 2 x . 2 4 = 272
2 x ( 1 + 2 4 ) = 272
2 x . 17 = 272
2 x = 16
2 x = 2 4
x = 4
Vậy x = 4
a)23+3 𝑥 =125 | b) 70 – 5.(𝑥 - 3)= 45 | c) 20 + 5 𝑥 = 57:55
3 𝑥 +23=125 | 70−5 𝑥 +15=45 | 5 𝑥 +20=5755
𝑥=34 | 𝑥=8 | 𝑥=−104
275
a) Ta có: \(x\left(x-1\right)-x^2+2x=5\)
\(\Leftrightarrow x^2-x-x^2+2x=5\)
hay x=5
b) Ta có: \(2x^2-2x=\left(x-1\right)^2\)
\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+9\right)-x\left(x-2\right)^2=19\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-19=0\)
\(\Leftrightarrow x^3+8-x^3+4x^2-4x=0\)
\(\Leftrightarrow4x^2-4x+8=0\)(Vô lý)
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)