so sánh \(A=\frac{10^{11}-1}{10^{12}-1}\)
với \(B=\frac{10^{10}+1}{10^{11}+1}\)
(giả chi tiết nhé các bạn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{11}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{11}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy : \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Ủng hộ mk nha !!! ^_^
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
Dấu "/" nghĩa là phân số nhé
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{10}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{11}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
=> A < B
Vậy A < B
Ủng hộ mk nha !!! ^_^
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
để so sánh A và B ta so sánh
\(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)
Ta có \(10^{11}-1< 10^{11}+1\)
và \(10^{12}-1>10^{11}+1\)
=> A<B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
Ta có \(A=\frac{10^{11}-1}{10^{12}-1}\)
=> \(10A=\frac{10^{12}-10}{10^{12}-1}\)
=>\(10A=\frac{\left(10^{12-1}\right)-9}{10^{12}-1}\)
=>\(10A=1-\frac{9}{10^{12}-1}\) ( 1 )
Ta có \(B=\frac{10^{10}+1}{10^{11}+1}\)
=>\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\) ( 2 )
Từ 1 và 2 => 10A < 10B => A < B