Tìm n để 3n +2 /4n - 5 có giá trị là số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Để \(\frac{3n-4}{n+2}\in Z\Rightarrow3n-4⋮n+2\)
Ta có: \(3n-4⋮n+2\)
\(\Rightarrow\left(3n+6\right)-10⋮n+2\)
\(\Rightarrow3\left(n+2\right)-10⋮n+2\)
\(\Rightarrow10⋮n+2\)
\(\Rightarrow n+2\in\left\{1;2;5;10\right\}\) ( không có trường hợp số âm do \(n\in Z^+\) )
+) \(n+2=1\Rightarrow n=-1\) ( loại )
+) \(n+2=2\Rightarrow n=0\) ( chọn )
+) \(n+2=5\Rightarrow n=3\) ( chọn )
+) \(n+2=10\Rightarrow n=8\) ( chọn )
Vậy \(n\in\left\{0;3;8\right\}\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
Ta có : \(A=3n^2-16n-12\)
\(=3n\left(n-6\right)+2\left(n-6\right)\)
\(=\left(n-6\right)\left(3n+2\right)\)
Vì n là số nguyên dương nên \(n-6< 3n+2\)
Vì A là số nguyên tố nên A chỉ có 2 ước nguyên dương là 1 và chính A
\(\Rightarrow n-6=1\)
\(\Rightarrow n=7\)
Thử lại : Thay n vào A ta được :
\(A=\left(7-6\right)\left(3.7+2\right)=23\)(là số nguyên tố)
Vậy n=6 thì A là số nguyên tố .
thông điệp nhỏ:
hay khi ko muốn
ai tích mình tích lại