ĐKXĐ 2021/(x-2√(x))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x\ne2\\ b,A=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\\ c,x=\dfrac{2021}{1010}\Leftrightarrow A=\dfrac{3}{\dfrac{2021}{1010}-\dfrac{2020}{1010}}=\dfrac{3}{\dfrac{1}{1010}}=3030\)
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
Đặt \(2020-x=u;x-2021=v\)thì \(u+v=-1\)
Phương trình trở thành \(\frac{u^2+uv+v^2}{u^2-uv+v^2}=\frac{19}{49}\Leftrightarrow30u^2+30v^2+68uv=0\)
\(\Leftrightarrow15\left(u+v\right)^2+4uv=0\Leftrightarrow4uv=-15\Leftrightarrow uv=\frac{-15}{4}\)
hay \(\left(2020-x\right)\left(x-2021\right)=-\frac{15}{4}\Leftrightarrow x^2-4041x+4082416,25=0\)
Dùng công thức nghiệm tìm được x = 2022, 5 hoặc x = 2018, 5
Ta có: \(\left|x+\frac{1}{2021}\right|\ge0\) ; \(\left|x+\frac{2}{2021}\right|\ge0\) ; ... ; \(\left|x+\frac{2020}{2021}\right|\ge0\) \(\left(\forall x\right)\)
\(\Rightarrow\left|x+\frac{1}{2021}\right|+\left|x+\frac{2}{2021}\right|+...+\left|x+\frac{2020}{2021}\right|\ge0\left(\forall x\right)\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
Từ đó ta được: \(x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Leftrightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Leftrightarrow x=\frac{\left(2020+1\right)\left[\left(2020-1\right)\div1+1\right]}{2021}\)
\(\Leftrightarrow x=\frac{2021\cdot2020}{2021}=2020\)
Vậy x = 2020
\(\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|=2021x\)
Ta có:\(\left|\frac{x+1}{2021}\right|\ge0;\left|\frac{x+2}{2021}\right|\ge0;....;\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\frac{x+1}{2021}+\frac{x+2}{2021}+...+\frac{x+2020}{2021}=2021x\)
\(\Rightarrow x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Rightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Rightarrow x=2020\)
2021x0.5+2021x1%-2021:2
=2021x0.5+2021x0.01-2021x0.5
=2021x(0.5+0.01-0.5)
=2021x 0.01
=20,21
Em tham khảo nhé
https://hoc24.vn/cau-hoi/cho-xsqrtx22021ysqrty220212021tinh-axy.332667728355
\(x^2+y^2+z^2=1\Rightarrow x^2,y^2,z^2\le1\Rightarrow-1\le x,y,z\le1\)
Ta có:\(x^3+y^3+z^3-x^2-y^2-z^2=0\)
\(\Rightarrow x^2\left(x-1\right)+y^2\left(y-1\right)+z^2\left(z-1\right)=0\)
Vì \(x-1\le0,y-1\le0,z-1\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}\le0,y^2\left(y-1\right)\le0,z^2\left(z-1\right)\le0\)
\(\Rightarrow x^2\left(x-1\right)\text{}+y^2\left(y-1\right)+z^2\left(z-1\right)\le0\)
Dấu "=" xảy ra khi\(\left\{{}\begin{matrix}x^2\left(x-1\right)=0\\y^2\left(y-1\right)=0\\z^2\left(z-1\right)=0\end{matrix}\right.\)
\(\Rightarrow\left(x,y,z\right)\) là bộ (0,0,1) và các hoán vị
\(\Rightarrow x^{2021}+y^{2021}+z^{2021}=1\)