cho 2n+1 là số nguyên tố (n thuộc N và n>2 ) . CM 2n-1là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a = 1 + 2 + 3 + ... + n
Số lượng số của tổng a là :
( n - 1 ) : 1 + 1 = n ( số )
Tổng a là :
( n + 1 ) x n : 2
Do ( n + 1 ) x n là 2 số liên tiếp
=> ( n + 1 ) x n \(⋮2\)
=> ( n + 1 ) x n : 2 \(⋮1\), n > 1
=> a là số nguyên tố
a, Gọi d là ƯCLN của n + 2 và 2n + 3
\(\Rightarrow n+2⋮d\)
\(\Rightarrow2\left(n+2\right)⋮d\)
\(\Rightarrow2n+4⋮d\)
Mà \(2n+3⋮d\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\) mà d là ƯCLN \(\Rightarrow d=1\)
=> 2 số n + 2 và 2n + 3 là 2 số nguyên tố cùng nhau
b, Gọi d là ƯCLN của 3n + 1 và 2n + 1
\(3n+1⋮d\) và \(2n+1⋮d\)
\(\Rightarrow2\left(3n+1\right)⋮d\)và \(3\left(2n+1\right)⋮d\)
\(\Rightarrow6n+2⋮d\) và \(6n+3⋮d\)
\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\)mà d là ƯCLN => d = 1
=> 2 số 3n +1 và 2n + 1 là hai số nguyên tố cùng nhau
Vì 2n+1 là số nguyên tố với n > 2
=> ta có: 2n+1-1 = 2n => chia hết cho 2 => 2n+1 là nguyên tố thì 2n-1 là hợp số (đpcm)
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.
đơn giản mà!
\(2^n+1\) là SNT nên \(n=2^x\) Do đó, \(2^n-1=2^{2^x}-1\)chia hết cho 3