K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vì a>b nên ta có

2a > 2b (1)

 3a > 3b (2)

=> 3a > 2b

và 2015>2015

=> 3a+2015>2b+2014

5 tháng 5 2015

Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014

=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)

Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)

\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

Vì a> b > 0 => a/b  > 1. Do đó:

\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)

=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}<\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\Rightarrow1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}>1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

=> VT > VP 

đề sai

8 tháng 8 2017

Đề đúng rồi,  - -

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

18 tháng 11 2017

\(P=\frac{2a+3b+3c-1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2c+1}{2017+c}\)

\(=\frac{6047-a}{2015+a}+\frac{6048-b}{2016+b}+\frac{6049-c}{2017+c}\)

\(=\frac{8062}{2015+a}+\frac{8064}{2016+b}+\frac{8066}{2017+c}-3\)

\(\ge\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{2015+2016+2017+a+b+c}-3=\frac{\left(\sqrt{8062}+\sqrt{8064}+\sqrt{8066}\right)^2}{8064}-3\)

Dấu = xảy ra khi ....

12 tháng 11 2017

Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ