- (\(\frac{1}{3}\)\(x \)+\(\frac{4}{3}\)\(x \))\(\times\)(-\(\frac{1}{5}\)\(x \)+\(\frac{3}{5}\))=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3}{5}.x-\frac{1}{5}=\frac{4}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=\frac{4}{5}+\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=1\)
\(\Leftrightarrow x=1:\frac{3}{5}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
b) \(\frac{4}{7}+\frac{5}{7}:x=1\)
\(\Leftrightarrow\frac{5}{7}:x=1-\frac{4}{7}\)
\(\Leftrightarrow\frac{5}{7}:x=\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{7}:\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
c) \(-\frac{12}{7}.\left(\frac{3}{4}-x\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{-12.1}{7.4}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow-\frac{3}{7}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow\frac{3}{4}-x=-1:\left(-\frac{3}{7}\right)\)
\(\Leftrightarrow\frac{3}{4}-x=\frac{7}{3}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{7}{3}=-\frac{19}{12}\)
Vậy : \(x=-\frac{19}{12}\)
d) \(x:\frac{17}{8}=-\frac{2}{5}.-\frac{9}{17}+3\)
\(\Leftrightarrow x:\frac{17}{8}=\frac{273}{85}\)
\(\Leftrightarrow x=\frac{273}{85}.\frac{17}{8}\)
\(\Leftrightarrow x=\frac{273}{40}\)
Vậy : \(x=\frac{273}{40}\)
\(\)
Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]
\(a,2\left(x-3\right)-5\left(2x-4\right)=0\)
=> \(2x-6-10x-20=0\)
=> \(\left(2x-10x\right)-\left(6+20\right)=0\)
=> \(-8x-26=0\)
=> \(-8x=26\)
=> \(x=26:-8=-\frac{13}{4}\)
Vậy \(x\in\left\{-\frac{13}{4}\right\}\)
\(b,3+\frac{1}{x-8}=0\)
=> \(\frac{1}{x-8}=0-3=-3\)
=> \(x-8=-\frac{1}{3}\)
=> \(x=-\frac{1}{3}+8=\frac{23}{3}\)
Vậy \(x\in\left\{\frac{23}{3}\right\}\)
\(c,\frac{8}{3}-\frac{2x+3}{5}=\frac{-7}{3}\)
=> \(15.\frac{8}{3}-15.\frac{2x+3}{5}=15.\frac{-7}{3}\)
Chiệt tiêu
=> \(5.8-3\left(2x+3\right)=5.\left(-7\right)\)
=> \(40-\left(6x+9\right)=-35\)
=> \(40-6x-9=-35\)
=>\(31=6x=-35\)
=> \(6x=41-\left(-35\right)=66\)
=> \(x=66:6=11\)
Vậy \(x\in\left\{11\right\}\)
\(d,\frac{1}{9}=\frac{5}{3x-5}=0\)
=> \(\frac{1}{9}=0\left(sai\right)\)
=> \(x\in\varnothing\)
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
a) \(\left(\frac{1}{7}x-\frac{2}{7}\right)\cdot\left(-\frac{1}{5}x+\frac{3}{5}\right)\cdot\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
\(\Rightarrow\)TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\) TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\) TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\)
\(\frac{1}{7}x=\frac{2}{7}\) \(-\frac{1}{5}x=\frac{3}{5}\) \(\frac{1}{3}x=\frac{4}{3}\)
\(x=\frac{2}{7}\cdot7\) \(x=\frac{3}{5}\cdot-5\) \(x=\frac{4}{3}\cdot3\)
\(x=2\) \(x=-3\) \(x=4\)
Vậy x = 2 hoặc x = -3 hoặc x = 4
b) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{5}x+1=0\)
\(x\cdot\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{5}\right)=1\)
\(x\cdot\frac{5+3-24}{30}=1\)
\(x\cdot\frac{-8}{15}=1\)
\(x=1\cdot\frac{-15}{8}=\frac{-15}{8}\)
Vậy x = \(\frac{-15}{8}\)