Cho A = 999991999 - 5555571997. Chứng minh A chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(999993^{1999}=999993^{1996}.999993^3=\)
\(=\left(999993^4\right)^{499}.999993^3\)
\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1
\(999993^3\) có tận cùng là 7
\(\Rightarrow999993^{1999}\) có tận cùng là 7
Ta có
\(555557^{1997}=555557^{1996}.555557=\)
\(=\left(555557^4\right)^{499}.555557\)
\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1
\(555557\) có tận cùng là 7
\(\Rightarrow555557^{1997}\) có tận cùng là 7
\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)
quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé
Ta thấy: 9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
a) Ta có:
\(A=4+4^2+4^3+...+4^{90}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{89}+4^{90}\right)\)
\(A=20+4^2.\left(4+4^2\right)+...+4^{88}.\left(4+4^2\right)\)
\(A=20+4^2.20+...+4^{88}.20\)
\(A=20.\left(1+4^2+...+4^{88}\right)\)
Vì \(20⋮5\) nên \(20.\left(1+4^2+...+4^{88}\right)⋮5\)
Vậy \(A⋮5\)
____________
b) Ta có:
\(A=4+4^2+4^3+...+4^{90}\)
\(A=\left(4+4^2+4^3\right)+...\left(4^{88}+4^{89}+4^{90}\right)\)
\(A=84+...+4^{87}.\left(4+4^2+4^3\right)\)
\(A=84+...+4^{87}.84\)
\(A=84.\left(1+...+4^{87}\right)\)
Vì \(84⋮21\) nên \(84.\left(1+...+4^{87}\right)⋮21\)
Vậy \(A⋮21\)
\(#WendyDang\)
Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
Ta có \(\left(...9\right)^2=\left(...1\right)\)
\(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)
\(\left(...7\right)^4=\left(...1\right)\)
\(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)
A có tận cùng là 2 không chia hết cho 5
Vậy không thể chứng minh a chia hết cho 5