tập hợp các giá trị nguyên của x sao cho A=(x^2+2x+12)/(x-5) nhận giá trị nguyên là S={.....}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
Ta có :
\(A=\frac{3x+5}{2+x}=\frac{3x+6-1}{2+x}=\frac{3.\left(x+2\right)-1}{2+x}=3-\frac{1}{2+x}\)
để S có giá trị nguyên thì \(\frac{1}{2+x}\in Z\)
\(\Rightarrow\)2 + x \(\in\)Ư ( 1 ) = { 1 ; -1 }
\(\Rightarrow\)x = -1 ; x = -3
khi đó : S = { -1 ; -3 }