Cho tam giác ABC cân tại A góc A < 90* , kẻ BD vuông góc với AC và CE vuông góc với AB . Chứng minh
Tam giác ABD bằng tam giác ACE
K là giao của BD và CE chứng minh AK là phân gác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét T.giác ABD và T.giác ACE có:
AB=AC (tam giác ABC cân)
góc A: góc chung
AE=AD
Do đó: t.giác ABD = t.giác ACE ( c-g-c)
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:
AB = AC (giả thiết)
∠(BAC) chung
⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)
⇒ AD = AE (hai cạnh tương ứng)
Xét ΔADK vuông tại D và ΔAEK vuông tại E có:
AD = AE (chứng minh trên)
AK cạnh chung
⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)
⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)
Vậy AK là tia phân giác của góc BAC.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
EB=DC
góc KBE=góc KCD
=>ΔKEB=ΔKDC
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: ΔABC cân tại A có AK là phân giác
nên AK là trung trực của BC
=>A,K,I thẳng hàng
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Tự vẽ hình nha bạn
Ta có: tam giác ABC cân tại A
=> B = C
Ta có: Góc D = góc E = 90o (góc vuông)
K1 = K2 (2 góc đối đỉnh)
=> 180 - E - K1 = 180 - D - K2
=> B1 = C1
Vì B = C ; B1 = C1 => B - B1 = C - C1
=> B2 = C2
Vì B2 = C2 nên KBC cân tại K
=> KB = KC
Xét tam giác AKB và tam giác AKC có:
AK cạnh chung (1)
AB = AC (2)
BK = BC (3)
Từ (1) ; (2) ; (3) = > Tam giác AKB = tam giác AKC (c - c - c) (4)
Từ (4) = > A1 = A2 (2 góc tương ứng)
=> AK là tia phân giác của góc A
=> ĐPCM
Tớ sẽ bổ sung thêm hình sau
Xét hai tam giác ADB và AEC có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\): góc chung
Vậy: \(\Delta ADB=\Delta AEC\left(ch-gn\right)\)
Suy ra: AD = AE (hai cạnh tương ứng)
Xét hai tam giác vuông ADK và AEK có:
AK: cạnh huyền chung
AD = AE (cmt)
Vậy: \(\Delta ADK=\Delta AEK\left(ch-cgv\right)\)
Suy ra: \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Do đó: AK là tia phân giác của góc A.
Giải
Xét tam giác EBC và tam giác DBC có:
E=D=90
B=C(gt)
BC là cạnh chung
=>tam giacs EBC=tam giác DBC( cạnh huyền-góc nhọn)
=>EC=DB( 2 cạnh TƯ)
Xét tam giác AEC và tam giác ADB có;
AB=AC(gt)
EC=BK(cmt)
AK cạnh chung
=> tam giác AEC=tam giác ADB(c.c.c)
=>B1=C1
Xét tam giác ABKvaf tam giác ACK có
AB=AC(gt)
AK chung
B1=C1(cmt)
=>tam giavs ABK=tam giác ACK(c.g.c)
=>A1=A2
=>AK là tia pg của góc A
(cmt: chứng minh trên)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đo: ΔABD=ΔACE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
Suy ra: \(\widehat{EAI}=\widehat{DAI}\)
hay AI là tia phân giác của góc BAC
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC