K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

a,A=(n-1).(n+1)-n^2+3n-5 

= n^2 - 1 - n^2 + 3n - 5

= 3n - 6

= 3(n - 2) chia hết cho 3

b,A=(2n-1).(n+1)-n(2n-4)+21 

= 2n^2 + n - 1 - 2n^2 + 4n + 21

= 5n + 20 = 5(n + 4) chia hết cho5

8 tháng 9 2020

A = ( n - 1 )( n + 1 ) - n2 + 3n - 5

= n2 - 1 - n2 + 3n - 5

= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )

A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21

= 2n2 + n - 1 - n( -n ) + 21

= 2n2 + n + 20 + n2

= 3n2 + n + 20 ( cái này chưa chắc được :)) )

2 tháng 2 2019

\(a)n+7⋮n+2\)

\(\Rightarrow n+2+5⋮n+2\)

Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)

Lập bảng :

n + 21-15-5
n-1-33-7

Vậy : ...

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

13 tháng 9 2017

1) Đặt A = n^5 - n = n(n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n - 1)(n + 1)(n^2 + 1) 
Nếu n chia hết cho 5 ta dễ thấy đpcm 
Nếu n : 5 dư 1 => n = 5k + 1 
=> A = n.(5k + 1 - 1)(n + 1)(n^2 + 1) = n.5k.(n + 1)(n^2 + 1) chia hết cho 5 
Nếu n : 5 dư 2 => n = 5k + 2 
=> A = n(n - 1)(n + 1)[(5k + 2)^2 + 1] = n(n - 1)(n + 1)(25k^2 + 20k + 5) 
= 5n(n - 1)(n + 1)(5k^2 + 4k + 1) chia hết cho 5 
Nếu n : 5 dư 3 => n = 5k + 3 
=>A = n(n - 1)(n + 1)(25k^2 + 30k + 10) = 5n(n - 1)(n + 1)(5k^2 + 6k + 2) chia hết cho 5 
Nếu n : 5 dư 4 => n = 5k + 4 
=> A = n(n - 1)(5k + 5)(n^2 + 1) = 5n(n - 1)(k + 1)(n^2 + 1) chia hết cho 5 
Vậy trong tất cả trường hợp n^5 - n luôn chia hết cho 6 

2) Đặt B = n^3 - 13n = n^3 - n -12n = n(n - 1)(n + 1) - 12n 
Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 
=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 
=> n^3 - n chia hết cho 6 

3) n^3 + 23n = n^3 - n + 24n = n(n - 1)(n + 1) + 24n 
Tương tự câu 2 : n(n - 1)(n + 1) và 24n chia hết cho 6 
=> n^3 + 23n chia hết cho 6 

4)Đặt A = n(n + 1)(2n + 1) = n(n + 1)[2(n - 1) + 3] 
= 2n(n + 1)(n - 1) + 3n(n + 1) 
n(n + 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
2n(n + 1)(n - 1) chia hết cho 2 
=> A chia hết cho 2 
n(n + 1)(n - 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3 
3n(n + 1) chia hết cho 3 
=> A chia hết cho 3 
Mà (2 ; 3) = 1 (nguyên tố cùng nhau) 
=> A chia hết cho 6 

5) Đặt A = 3n^4 - 14n^3 + 21n^2 - 10n 
Chứng minh bằng quy nạp 
Với n =1 => A = 0 chia hết cho 24 
Giả sử A chia hết 24 đúng với n = k 
Nghĩa là :A(k) = 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 
Ta phải chứng minh : 
A chia hết cho 24 đúng với n = k + 1 
Nghĩa là : 
A(k + 1) = 3(k + 1)^4 - 14(k + 1)^3 + 21(k + 1)^2 - 10(k + 1) 
Khai triển ta được : 
A = (3k^4 - 14k^3 + 21k^2 - 10k) + (12k^3 - 24k^2 + 12k) 
Ta phải chứng minh : 12k^3 - 24k^2 + 12k chia hết 24 
12k^3 - 24k^2 + 12k = 12k(k^2 - 2k + 1) 
= 12k(k - 1)^2 = 12k(k - 1)(k - 1) 
12 chia hết 12 
k(k - 1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> 12k^3 - 24k^2 - 2k + 1 chia hết cho 24 
Mà 3k^4 - 14k^3 + 21k^2 - 10k chia hết cho 24 (giả thiết quy nạp) 
=> A(k + 1) chia hết 24 
Theo nguyên lý quy nạp => A chia hết cho 24 (đpcm) 

6) n = 2k + 1 với k thuộc Z 
A = n^2 + 4n + 3 = (2k + 1)^2 + 4(2k + 1) + 3 
= 4k^2 + 12k + 8 
= 4(k^2 + 3k + 2) 
= 4(k + 2k + k + 2) 
= 4(k + 1)(k + 2) 
4 chia hết cho 4 
(k +1)(k + 2) là tích 2 số nguyên liên tiếp nên chia hết cho 2 
=> n^2 + 4n + 3 chia hết cho 4.2 = 8 với n lẻ 

7) n = 2k + 1 
Đặt A = n^3 + 3n^2 - n - 3 
= (2k + 1)^3 + 3(2k + 1)^2 - (2k + 1) - 3 
= 8k^3 + 24k^2 + 16k 
= 8k(k^2 + 3k + 2) 
= 8k(k^2 + k + 2k + 2) 
= 8k(k + 1)(k + 2) 
8 chia hết cho 8 
k(k + 1)(k + 2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3 => chia hết cho 6 
=> A chia hết cho 8.6 = 48 với n lẻ

19 tháng 6 2015

(3n.5) là (3n-5) phải không

30 tháng 6 2017

bạn viết sai đề kìa