cho a+b/a-b=c+a/c-a va abc khac 0 chung minh rang tu 3 so abc ( co 1 so su dung 2 lan co the lap thanh 1 ti le thuc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a không đồng ý với ý kiến vì dựa dẫm vào người khác thì không thể tốt về công việc và tương lai sau này phải tự mình đứng lên có vấp ngã mới có thành công
a)Ta có: 5,7 là 2 số nguyên tố nên khi chọn 4 số trong 5 số trên sẽ có ít nhất 1 trong 2 số này
Khi đó sẽ có 1 tích chia hết cho số được chọn, 1 tích còn lại không(do trong 5 số trên không có số nào khác chính nó chia hết cho 5 và 7)
=>không thể tạo thành 1 tích
=>không thể tạo thành tỉ lệ thức
b)Ta có: 1.8=2.4
=>tạo được thành tỉ lệ thức
c)Ta có: 3.81=9.27
=>tạo được thành tỉ lệ thức
tổng là
100*2*(a+b+c) + 10*2*(a+b+c)+(a+b+c)
=111*2(a+b+c)
=222*(a+b+c) chia hết cho 222
Theo dấu hiệu chia hết cho 7, để số A chia hết cho 7 => (2a+3b+c+2) chia hết cho 7
A chia hết cho 9 => tổng các chữ số của A là (21+a+b+c) chia hết cho 9 <=> (3+a+b+c) chia hết cho 9
A chia hết cho 5 => c = 0; 5
1) Nếu c = 0 => 3 + a+b chia hết cho 9 => a+b = 6; 15
=> (a, b) = (1,5); (2,4); (3,3); (4,2); (6,9); (7,8); (8,7)
Tất cả các cặp này không có cặp nào thỏa mãn điều kiện (2a+3b+2) chia hết cho 7 => loại.
2) Nếu c = 5 => (3 + a+b + 5) = (8 + a+b) chia hết cho 9 => a+b = 10;
=> (a, b) = (1,9); (2,8); ...; (9,1)
điều kiện (2a+3b+c+2) chia hết cho 7 trở thành (2a+3b+7) chia hết cho 7 hay (2a+3b) chia hết cho 7.
trong 9 cặp (a,b) chỉ có (a=2, b=8) và (a=9, b=1) thỏa mãn điều kiện chia hết cho 7
Vậy A = 579285 và 579915
Hic, giải kiểu này phải thử nhiều quá, ai có cách giải hay hơn mình tích liền.
(trong bài giải ta vẫn xét cả a=b dù đề bài cho a khác b)
Ta có : \(b=\frac{a+c}{2}\) \(\implies\) \(2b=a+c\)
\(\frac{2}{c}=\frac{1}{b}+\frac{1}{d}\)
\(\implies\) \(\frac{1}{2}.\frac{2}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\implies\) \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\iff\) \(\frac{1}{c}=\frac{b+d}{2db}\)
\(2db=c.\left(b+d\right)\)
\(\left(a+c\right)d=cd+cb\)
\(ad+cd=cd+cb\)
\(ad=cb\)
\(\frac{a}{c}=\frac{b}{d}\) là một tỉ lệ thức \(\left(đpcm\right)\)