cho a,b,c>01 cmr:
a^2/b+b^2/c+c^2/a>_a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk nghĩ đề sai nhé
Lời giải
Vì \(a;b;c\) là các cạnh của tam giác nên \(a;b;c>0\)
Ta luôn có: \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\)
Cộng theo 3 vế ta có: \(a^2+b^2+b^2+c^2+c^2+a^2\ge2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Dấu "=" xảy ra khi: \(a=b=c\Leftrightarrow\Delta ABC\) đều
Ta có: a2 + b2 + c2 + 2bc = a2 + (b + c)2 > 0
(a2 > 0, với a là cạnh cảu tam giác, (b + c)2 > 0, với b và c là cá cạnh tam giác)
2)
Xét hiệu:
\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)
\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)
\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)
=> BĐT luôn đúng
Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)
1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)
\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)
\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)
Từ (1)(2)(3) cộng vế theo vế:
\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)
\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)
a+b+c=0
a+b=-c
(a+b)^3=(-c)^3
a^3+3a^2b+3ab^2+b^3=(-c)^3
a^3+b^3+c^3=-3a^2b-3ab^2
a^3+b^3+c^3=-3ab(-c)
a^3+b^3+c^3=3abc
đặt: x = b + c - a > 0
y = a + c - b > 0
z = a + b - c > 0
\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)
\(b=\frac{\left(x+z\right)}{2}\)
\(c=\frac{\left(x+y\right)}{2}\)
\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)
\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)
\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng các BĐT trên, ta được:
\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).